ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI (AUTONOMOUS)

RE-ACCREDITED WITH B++ GRADE BY NAAC

(Affiliated to Mother Teresa Women's University, Kodaikanal)
PG AND RESEARCH DEPARTMENT OF ENGLISH

CURRICULUM FRAMEWORK AND SYLLABUS FOR OUTCOME BASED EDUCATION IN M.Sc., (ZOOLOGY)

UNDER
CHOICE BASED CREDIT SYSTEM
2019-2022

Program Outcomes:

Upon completion of M.Sc., Zoology Degree Programme, the outcomes are expected from the graduates.

PO1	Gaining relevant knowledge of core concept, principles, themes, terminology and
	classified system in the biology and microbiology disciplines covered in Zoology
PO2	Comprehending the scientific explanation for the unity and diversity of life,
	genetical and heredity concepts of life in the earth and analyzing this with
	developmental stages of animal with copious examples.
PO3	Gaining keen awareness on the environment, ecological balance and clean green
	concepts and develop empathy and love towards the society.
PO4	Doing quantitative, qualitative analysis and interpretation of biological data
	synthesis of information from the database.
PO 5	Upgrading skills in designing and carryout the research projects using appropriate
	biological techniques and approaches
PO6	Gaining clear knowledge on the function of physiological system of animals at cell
	and molecular level and their biological concepts.
PO7	Gaining knowledge of agro based small scale industries like sericulture, fish
	farming, poultry farming and vermicompost production to aim at self reliance.

COMMON ACADEMIC STRUCTURE

M.Sc., (Zoology) / 2019 - 2022

		Wi.Sc., (Z0010gy) / 2019 - 2022		of	M	Iax M	larks	
S.NO	Course code	COURSE TITLE	Lecture/ Practical (Hours/week) Duration		Internal	External	Total	Credit points
	SEMESTER I							
1	MPZC1	Core I – Biological Chemistry	6	3	25	75	100	5
2	MPZC2	Core II - Cell Biology	6	3	25	75	100	5
3	MPZC3	Core III - Microbiology	6	3	25	75	100	5
4	MPZP1	Core Practical I- Biological Chemistry, Cell	6	3	40	60	100	5
		Biology & Microbiology						
5	MPZE1	Elective I – Bioinstrumentation/ Ornamental Fish Culture	6	3	25	75	100	4
		SEMESTER II						
1	MPZC4	Core IV - Developmental Biology	6	3	25	75	100	5
2	MPZC5	Core V - Environmental biology &	6	3	25	75	100	5
2	WIFZCS	Biodiversity	0	3	23	13	100	3
3	MPZC6	Core VI Bioinformatics	6	3	25	75	100	5
4	MPZP2	Practical II - Developmental Biology,	6	3	40	60	100	5
		Environmental biology & Biodiversity and Bioinformatics						
5	MPZE2	Elective II - Biostatistics & Computer	6	3	25	75	100	4
	Applications/ Biopharmaceuticals SEMESTER III							
1	MPZC7	Core VII -Molecular Genetics	6	3	25	75	100	5
2	MPZC8	Core VIII -Sericulture	6	3	25	75	100	5
3	MPZC9	Core IX - Biotechnology	6	3	25	75	100	5
4	MPZP3	Core Practical III - Genetics, Sericulture,	6	3	40	60	100	5
	WH 21 3	Biotechnology		J			100	
5	MPZE3	Elective III - Evolution/ Food and Nutrition	6	3	25	75	100	4
	l	SEMESTER IV	<u> </u>		<u> </u>	<u>I</u>	1	1
1	MPZC10	Core X - Animal Physiology	6	3	25	75	100	5
2	MPZC11	Core XI - Immunology	6	3	25	75	100	5
3	MPZP4	Core Practical IV - Animal Physiology and	6	3	40	60	100	4
		Immunology						
4	MPZPR	Project	12		25	75	100	4
-	Total Credits: 90 Total Marks: 1900							

Total Credits: 90 Total Marks: 1900

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC1	Batch	2019-2021
Hrs/week	6	Semester	I
Credits	5	Course Title	Core I - Biological Chemistry

- > To acquire knowledge about the macromolecules
- To analyze and apply biochemical aspects in day today life
 To know biochemistry as a vital branch of Biology

Unit	Content	Hrs
	Water: Structure – thermal and solvent properties – dissociation of weak	
I	acids - Henderson and Hassel bach equation .Water and Electrolytic	10
	dissociation : chemical bonds Acid - Base balance, Concept of pH and	10
	buffers, Acidosis and Alkalosis.	
	Carbohydrates: Classification; Structure, properties and biological	
	importance of ribose, deoxyribose, glucose, fructose, galactose, lactose,	• •
II	maltose, sucrose, starch, glycogen, cellulose and chitin. Metabolism and	20
	its regulation: Glycolysis – Kreb's cycle – gluconeogenesis, glycogenesis,	
	glycogenolysis, HMP shunt. (Including the Energetics of all Metabolic	
	Pathways).Cori's lactic acid cycle and Blood sugar level.	
	Synthesis and metabolism of Amino acids: Basic structure and	
	classification- Physical and chemical properties Biosynthesis of amino	20
III	acids. Proteins: Biological significance - Classification Levels of	
	organization – primary, secondary, tertiary and quaternary, Ramachandran	
	Plot. Metabolism: Transamination, deamination and transmethylation.	
	Formation of Ammonia and Urea.	
	Lipids and Lipid Metabolism- Structure and Classification biological	
	importance of lipids. Oxidation of Fatty acids $-\alpha$ Oxidation, β Oxidation	
IV	& Omega Oxidation. β- Oxidation of Palmitic acid and its Bioenergetics.	15
	Ketogenesis, degradation of fatty acids and cholesterol Ketone bodies.	
	Nucleic acid structure Watson & Crick model of DNA, Purine	
V	Metabolism, Pyrimidine Metabolism, and Replication of DNA.	10
	Enzymes and Hormones: Properties, classification, biochemical functions	15
	enzyme action and regulation, enzyme kinetics, enzyme	
VI	inhibitors/activators. Coenzyme, isoenzyme, allosteric enzyme, abzyme	
VI	and ribozyme.Michael-Menton concept.	
	Chemistry of Hormones: Protein and Steroid Hormones, Mechanism of	
	Protein Hormone Action, Mechanism of Steroid Hormone Action.	
	Total contact hours	90

- 3. Conn, E.E., P.K.Stumpf, G.Bruening and R.H.Doi, 1999. Outline of Biochemistry, John Wiley & Sons Inc., New York. 5. Deb, A.C. 2011. Fundamentals of Biochemistry, 10th Edition, New Central Book Agency Pvt. Ltd., Kolkata.
- 4. Jain, J.L., Sunjay Jain and Nitin Jain. 2010. Fundamentals of Biochemistry, Fifth Edition, S. Chand and Company Ltd, NewDelhi.
- 5. Morris, J.G. 1974. A Biologist"s physical chemistry. II edition. Edward Arnold A division of Holder and Stoughton, London.
- 6. Nelson, D.L., and M.M.Cox, 2010, Lehninger Principles of Biochemistry, 5th edition, Worth Publishers, New York.
- 7. Ramarao, A.V.S.S. and Suryalakshmi, A 2009. Textbook of Biochemistry for Medical Students, 11th UVS Publishers Distributors Pvt. Ltd., New Delhi.
- 8. Stryer, L., 2000. Fourth edition Biochemistry, W.H. Freeman and Company, New York.
- 9. Emil.Smith Rober.L.Hill, Principles of Biochemistry Mammalian Biochemistry, VII Ed., Mc G. Raw Hill Book Company, New Delhi.

K2	CO 1	To understand the structural organization and functions of biomolecules.
K2	CO 2	To be able to explain the specificity of enzymes (biochemical catalysts), and
		the chemistry involved in enzyme action
K3	CO 3	To understand the principles of bioenergetics and enzyme catalysis.
K4	CO 4	To be able to explain how the metabolism of organic compounds leads
		ultimately to the generation of large quantities of ATP.
K5	CO 5	To understand the types, structure, biochemical properties and functions of
		hormones.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC2	Batch	2019-2021
Hrs/week	6	Semester	I
Credits	5	Course Title	Core I - Cell Biology

- > To understand techniques of microscopes
- > To learn the fundamental concepts of cell organelles and its function
- > To explain the role of membranes in cell communication

Unit	Content	Hrs
	Microscopy and Prokaryotes	
I	Microscopy: Principles and applications - Electron Microscope (TEM and	
	SEM), Phase Contrast Microscope, X-ray microscope and Fluorescent	15
	microscope. Prokaryotic cells - E.coli, Cyanobacteria and Mycoplasma,	
	Structure of Viruses and Virion.	
	Bio Membrane Structure and Function	
	Structure of model membranes, lipid bilayer andmembrane protein –	
II	diffusion, osmosis, ion channels, active transport, ion pumps,mechanism	15
	of sorting and regulation of intracellular transport, electrical properties of	
	membranes ,cell adhesion-intercellular junction.	
	Cell Organelles	
	Structural organization and function of intracellular organelles:	15
III	Endoplasmic reticulum, Ribosome, Golgi bodies, Lysosomes,	
	Peroxisomes, Glyoxisomes and Centrioles.	
	Nucleus and Chromosomes	
	Nucleus Nuclear envelope, structure and function of	
IV	Chromatin,organization of Nucleosome, Euchromatin and	15
	Heterochromatin.Chromosomes - Ultrastructure and functions, Giant	
	Chromosomes-Polytene and Lampbrush.Cell Division and Cell Cycle-	
	Mitosis, Meiosis, Steps in Cell cycle and Control of Cell cycle.	
	Protein Synthesis	
\mathbf{V}	Protein synthesis - Transcription in Prokaryotes and Eukaryotes,	15
	Mechanism of transcription - initiation, elongation and termination.	
	Transcription factors - Zinc fingers, Leucine zippers. Translation -	
	initiation of protein synthesis - activation of amino acids, aminoacylation	
	of tRNA, elongation and termination of polypeptide chain. Enzymes and	
	factors involved in protein synthesis, post translation modification.	
	Gene Expression	15
VI	Regulation of gene expression - Lac operon - components, repressor	
	mechanism. Ara operon, Arabinose metabolism in E.coli. Cancer – Types	
	and properties. Genetics of Cancer, Nanotechnology and Cancer.	
	Oncogenes and Co suppressor gene.	
	Total contact hours	90

- 1. De Roberties E.D.P and E.M.F.DeRoberties 2011. Cell and Molecular Biology. 8th edition. B.I. Publicatons Pvt. Ltd., India
- 2. Powar, C.B. 2010. Cell Biology 3rd Edition, Himalayas Publishing House, Bombay.
- 3. Lewis J Kleinsmith and Valerie M Kish. 1988. Principles of Cell Biology, Harper and Row Publication, New York.
- 4. Prakash S. Lohar, 2009, Cell and Molecular Biology, MJP Publishers. Chennai
- 5. Lodish, Berk, Zipursky, Matsudara, Baltimore and Darnell.1999. Molecular Cell Biology, Fourth Edition, W.H.Freeman and Company, Newyork.
- 6. Gupta M.L and Jangir M.L. 2009. Cell Biology: Fundamentals and Application, Agrobios Publishers, Jodhpur.

K2	CO 1	To understand techniques of microsopes.
K2	CO 2	To know the structure and functions of cell organelles.
К3	CO3	To Comprehend the role of membranes in cell communication.
K4	CO4	To know about gene organization, expression & regulation.
K4	CO5	To know about gene organization, expression & regulation.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC3	Batch	2019-2021
Hrs/week	6	Semester	I
Credits	5	Course Title	Core III - Microbiology

- > To understand scope and importance of microbiology.
- > To acquire knowledge of microbial world.
- > Be able to do application of microorganism in industrial aspects.

Unit	Content	Hrs
	History and Microbial Growth	
I	History and application of Microbiology	
	Methods in microbiology-Microbial Cultures, methods of culturing	15
	anaerobes, methods of isolation and maintenance of pure culture, culture	
	characteristics, microbial growth.	
	Methods of bacterial growth, growth rate, growth curve.	
	Measurement of bacterial growth, factors affecting bacterial growth.	
	Culture medium, sterilization techniques.	
	Staining Techniques - Simple, differential and Gram Staining.	
	Fermentors and Fermentative Microbes	
	History and design of fermenters, basic functions of fermenters, types of	
II	fermenter, construction of fermenters, design and operation, use of computer	15
	in fermenter, achievement and maintenance of aspetic conditions, aseptic	
	operation and contaminent, batch fermentation, fed batch fermentation,	
	continuous fermentation, scale up of fermentations.	
	Industrial microbiological processes, culture preservation, criteria for	
	selection of micro organisms for fermentation, strain improvement.	
	Industrial Microbiology	
	Alcohol production – Ethanol	15
III	Production of Acids - Lactic acid and Vinegar,	
	Production of Antibiotics – Penicillin and Streptomycin	
	Production of Amino acid - L-lysine, L- glutamic acid.	
	Production and Application of Microbial Enzymes and Immobilization of	
	Enzymes.	
	Food Microbiology	
	Dairy Industry; Dairy Products-Yoghurt, Butter Milk, Butter, Cheese.	
IV	Microbial Spoilage of food: Microbial Contamination and Spoilage of	15
	Poultry, Fish and Sea Foods.	
	Preservation of Food: Preservative Methods - Physical and Chemical	
	Methods.	
	Medical Microbiology	
${f V}$	Bacterial diseases: Air borne diseases- Diphtheria, Meningitis, Pertusis,	15
	Streptococcal Pneumonia.	

Total contact hours		
	Biodegradation – Microbial degradation of Xenobiotics and Super Bug.	
	Water Pollution Management – Bioaugmentation and Bioremediation	
	Potable water and Sewage treatment.	
	Bacterial Insecticides - Bacillus thuringenesis and Viral Insecticides.	
	Biofertilizers and Biopesticides,	15
VI	Role of Ti Plasmid and Nif gene in Agriculture.	
	Agricultural And Environmental Microbiology	
	Contact Disease – Leprosy. Viral diseases - Influenza, Hepatitis - B, Rabies.	
	Sexually Transmitted Diseases - Gonorrhea and Syphilis	
	Soil Borne Diseases - Tetanus, Anthrax	
	Food and Water Borne Diseases- Cholera and Typhoid.	

- 1. Dr.R.C.Dubey .Dr.D.K.Maheswari, (2010), A Text book of Microbiology, S.Chand & CO Ramnager, New Delhi.
- 2. Ronald, M.Atlas, (1988), Microbiology Macmillan publishing company Newyork.
- 3. J.Pelczar, D,Reid. (1984), TATA Mc Graw Hill publishing company Ltd. Newyork.
- 4. Samuel Baron, Medical Microbiology, II Ed., Wesley publishing company, California
- 5. Presscott-Microbiology.
- 6. Sathyanarayana-Biotechnology.

K2	CO 1	To compare the traditional and the modern microbiological techniques.
K3	CO 2	To apply the knowledge of microbial industry in crop improvement.
K3	CO 3	To differentiate between beneficial and harmful microorganism
K4	CO 4	To gain knowledge in isolation and identification of microbes.
K5	CO 5	To exploit microorganism in food production.

Programme code	PGZOOA	Programme	Zoology	
Course code	MPZP1	Batch	2019-2021	
Hrs/week	6	Semester	I	
Credits	5	Course Title	rse Title Core Practical I- Biological Chemistry, Cell	
			Biology and Microbiology	

- To impart practical knowledge on biochemical analysis.
- > To analyse the cellular components.
- ➤ To culture and study the microorganisms.

CONTENT

Biological Chemistry

Effect of temperature on salivary amylase activity - Determination of Q 10.

Effect of pH on salivary amylase activity.

Effect of Enzyme Concentration on Salivary amylase activity

Influence of substrate concentration on Salivary amylase activity

Paper Chromatography – Ascending and Circular chromatography

Column Chromatography – Separation of pigments from varied leaves or flowers

Gel Electrophoresis – (Demonstration only)

Quantitative estimation - Estimation of Carbohydrates, Proteins and Lipids from fresh tissues - Standard graphs.

Cell Biology

Microscopy: Optical and Phase Contrast Microscope

Micrometry - Measurement of cells using Ocular and Stage micrometers - Length and Width

Counting of blood cells in Human blood - R.B.C and W.B.C

Identification of mitotic stages in Onion root tip.

Identification of meiotic stages in Tradescantia

Observation of Giant chromosome in Chironomous larva. (Visual Aid / Virtual Dissection)

Observation of osmosis in Onion epidermal cells (Demonstration only)

Microbiology

Sterilization of glassware and media

Preparation of Culture media

Serial dilution Technique

Aseptic transfer of Bacteria

Pure culture of Bacteria

Preservation and maintenance of Bacterial culture

Cultural characteristics of bacteria

Wet mount preparation and Hanging Drop technique

Microscopic measurement of microbes using Haemocytometer

Spotters:

Hot air oven, Autoclave, Pressure cooker, Agar Plate, Inoculation needle, Structure of Bacteria, Structure of Virus

K3	CO 1	To comprehend the methodologies of biochemistry.
К3	CO 2	To apply modern tools in cell and molecular analysis.
К3	CO 3	To validate metabolic and microbial studies
K4	CO 4	To interpret the applications of biological analysis
K5	CO 5	To remember the biochemical activity at cellular level.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZE1	Batch	2019-2021
Hrs/week	6	Semester	I
Credits	4	Course Title	Elective I - Bioinstrumentation

- > To provide quality guidance to students to learn basics of research.
- > To adopt various biological methods in biological analysis.
- > To impart knowledge on handling instruments.

Unit	Content	Hrs			
	Principles and Applications				
Ι	Centrifuges: Low, high and Ultracentrifuge.				
	Spectrophotometer, UV -Visible Spectrophotometer, Mass	15			
	Spectrometery. X- ray diffraction, PCR. Immuno assasy: ELISA				
	Separation and Analytical Techniques				
	Chromatography - Thin layer Chromatography (TLC), Column				
II	Chromatography, Gas Chromatography and High performance liquid	15			
	chromatography (HPLC).				
	Electrophoresis - SDS - PAGE, MOLDI, Agarose Gel Electrophoresis,				
	Immunoelectrophoresis.				
	Dosimetry- Geiger- Muller Counter, Scintillation Counter.				
	Histological and Histochemical Methods				
III	Histochemical Techniques: Protein, Carbohydrates, Lipids and DNA.	15			
	Histological preparations of Tissues for Light and Electron Microscopy,				
	Immunochemical localization.				
	Instrumental Analysis				
IV	pH meter- Introduction, Principle and measurement, Calorimeter, Colony				
	hybridization,				
	Cytometry-Cytophotometry, flow cytometry.				
	Direct gene transfer techniques-Ultrasonication, liposome fusion,				
${f V}$	electroporation, Particle Bombardment gen method, pollen transfer, micro	15			
	and macroinjection.				
	Tracer Techniques: Principle and applications (only). Auto radiography				
	Research Methods and Thesis Writing	15			
	Identification, Selection and Scope of research problems - Methods of				
VI	literature collection and review – Planning and execution of investigation				
	- Thesis writing - Preparation and presentation of research paper for				
	Journals, Conferences – Preparation of short communications and review				
	articles.				
<u></u>	Total contact hours	90			

- 1. Jayaraman, J (1972) Laborarotary manual in biochemistry New age International Pvt., Ltd., Publisher, New Delhi.
- 2. Oser, B.L.., Hawk''s physiological chemistry 14th ed., McGrow Hill book co., New Delhi.
- 3. Plummer, T.D., (1971). An Introduction to Biochemistry 3rd ed., Hill book co., New Delhi.
- 4. Sadasivam, S, & Manickam A, biochemical methods Wiley Eastern ltd, New Delhi.
- 5. Daniel, W.W, (1978 Biostastics. A foundation for Analysis in the Health Sciences. (Wiley Series in Probability and Statistics) 9th Ed., New York.
- 6. Willard, HH (1986) Instrumental methods of Analysis, 6th Ed., CBS Publication, New Delhi.

K2	CO 1	To know the importance of instruments in biology.	
K3	CO 2	To provide information about principles and applications of instruments.	
K3	CO 3	To learn the procedure and protocol of various techniques.	
K4	CO 4	To acquire theoretical knowledge about research methodology.	
K5	CO 5	To enable the students to prepare project manuscript.	

Programme code	PGZOOA	Programme	Zoology
Course code	MPZE1	Batch	2019-2021
Hrs/week	6	Semester I	
Credits	4	Course Title	Elective I: Ornamental Fish Culture

- > To provide quality guidance to students to learn basics of research.
- > To adopt various biological methods in biological analysis.
- > To impart knowledge on handling instruments.

Unit	Content	Hrs		
	Aquarium Tank			
I	Construction of Home Aquarium: Design and Construction of Aquarium			
	tank, Accessories used in Aquarium, (aerators, filters, types of filters and			
	hand nets), Setting up of Aquarium tank (gravels / pepples, plants,			
	ornamental objects and fishes, selection of species). Aquarium plants and			
	its importance			
	Aquarium Management			
	Cleaning the aquarium - Maintenance of water quality - Temperature,	15		
II	Water change, Ammonia, 02/CO2, Water hardness. Control of Snail and			
	Control of algal growth in Aquarium tank.			
	Taxonomy And Biology			
	Taxonomy and Biology of popular Ornamental fishes: Live-bearers			
	(Ovo-viviparous) - Red Swordtail (Labeo bicolor), Platy (Xiphophorus			
	maculatus), Guppy (Poecilia reticulata) and Molly (Black molly). Egg			
III	layers (Oviparous) - Gold fish (Carassius auratus), Siamese fighting fish	15		
	(Beta splendens), Gourami (Trichogaster leeri), Angel fish			
	(Pterophyllumscalare), Oscar (Austronotus ocellatus) and Koi carp			
	(Cyprinus carpio carpio). Breeding and Spawning of Live bearers and			
	Egg layers. Induced breeding and Production of Monosex fish.			
	Nutrition			
IV	Nutritional requirements of Ornamental fishes - Different kinds of feeds -			
	Artificial and Live food. Culture of live food organisms -Infusorians,	15		
	Rotifers, Cladocerans, Brine shrimp, Chironomus and Tubifex. Artificial			
	feed - feed formulation. Balanced diets for Aquarium fishes			
	Diseases Of Ornamental Fishes			
\mathbf{V}	Common diseases of aquarium fishes - Protozoan, Fungal, Bacterial and	15		
	Nutritional diseases. Their diagnosis and treatment, Problems of over			
	feeding.			
	Commercially important Marine Ornamental fishes. Purchase and			
	Transport of Ornamental fishes. Use of Sedatives. Other Ornamental	15		
VI	organisms - Anemones, Lobsters and Shrimps. Entrepreneurship			
	development in Ornamental fish culture.			
	Total contact hours	90		

- 1. J.D. Jameson and R.Santhanam (1996) Manual of Ornamental fishes and Farming Technologies Fisheries College and Research Institute TANVASU, Tuticorin
- 2. Meenakshi Jindal, N.K.Yadava and R.K.Gupta (2000) Freshwater Ornamental Fishes, Mangalam Publications, Delhi.
- 3. V.K. Venkatataramani et al., (2004). Biodiversity and Stock Assessment of Marine Ornamental fishes. Department of Fisheries Biology and Capture Fisheries, Fisheries College and Research Institute, TANVASU, Tuticorin.
- 4. A.D.Dholakia, (2009) Ornamental Fish Culture and Aquarium Management, Daya Publishing House, Delhi
- 5. H.S.Jagtap and S.N.Mukherjee and S.S.Nanware, (2009) P.ractical Manual of Pisciculture and Aquarium Keeping, Daya Publishing House, New Delhi.

K2	CO 1	To study the various ornamental fishes and its culture	
K3	CO 2	Γο recollect the general ornamental fishes	
K3	CO 3	To understand the scope of fish culture	
K4	CO 4	To apply the ornamental fish culture methods for aquarium maintenance	
K5	CO 5	To review the different types of cultural methods	

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC4	Batch	2019-2021
Hrs/week	6	Semester	II
Credits	5	Course Title	Core IV- Developmental Biology

- > To describe the embryological processes of different organisms.
- > To appreciate and accept the origin of life and evolutionary processes.

Unit	Content	Hrs		
	Theories of Embryology and Gametogenesis			
I	Theories of Embryology: Pre formation theories, Epigenetic theory, Von			
	Baer's Law, Germplasm theory, Mosaic theory, Regulative theory,			
	Concept of potency and totipotency, Gradient theory, Gametogenesis:			
	Orgin of primordial germ cells, Spermatogenesis – Formation of			
	Spermatid, Spermioteliosis, Morphology of spermatozoan (mammal),			
	Oogenesis - Proliferatiave phase, Growth phase - Pre-vitellogenesis,			
	Vitellogenesis, Maturation of egg, Types of eggs.			
	Fertilization			
	Fertilization : mechanism of fertilization – Encounter of spermatozoa and	15		
II	ova, Capacitation and contact, Acrosome reaction and penetration,			
	Cortical reaction, Activation of ovum – Change in ionic permeability and			
	potential of egg's plasma membrane, Transient intracellular rise in			
	calcium ions, Transient intracellular increase in pH, Monospermy &			
	Polyspermy, Theories of Fertilization, Migration of pronuclei and			
	amphimixis, Ooplasmic segregation; Significance of fertilization.			
	Cleavage & Gastrulation			
	Cleavage - Peculiarities of cell division in Cleavage, Patterns of			
	Cleavage. The Nuclei of Cleaving cells, Distribution of Cytoplasmic			
	substances in the egg during Cleavage, Role of egg cortex, The			
III	Morphogenetic gradients in the egg cytoplasm, Effect of yolk on	15		
	cleavage, Cleavage in Amphioxus, Frog, Chick and Mammal.			
	Gastrulation – The fate map, Morphogenetic movement, Metabolism			
	during gastrulation, Activity of gene during gastrulation, Gastrulation in			
	Amphioxus, Frog, Chick and Mammal.			
	Organogenesis			
	Formation of primary organ rudiments – Methods of organ formation –			
IV	Tubulation – Neurogenesis, Notogenesis, Mesogenesis and Enterogenesis.	15		
	Development of eye, brain, ear and heart in Frog, Developmental defects			
	or abnormalities (Teratogenesis).			
	Metamorphosis			
\mathbf{V}	Metamorphosis in Amphibia, Hormonal regulation of Amphibian	15		
	metamorphosis, Tissue reactivity in Amphibian Metamorphosis.			

	Metamorphosis in insects. Regeneration in Planarian and Amphibian.	
VI	Experimental & Applied Embryology Embryonic induction, Organizer concept, Theories — Neural induction. Nucleocytoplasmic Interaction. Birth control measures. Assisted Reproductive technology - Artificial insemination — Intra cervical insemination, Intra vaginal insemination and Intra uterin insemination.	15
	Total contact hours	90

- 1. B.I Balinsky (1981), An Introduction to Embryology, V Ed., Saunders College Publishing, Newyork.
- 2. Dr.R.C.Delela and R.Verma., (1986 87), A Text book of Chordate Embrology, V Ed., Jai Prakashnathan & co, Meerut city, India.
- 3. P.S.Verma and V.K.Agarwal (1975) Chordate Embryology X Ed., S.Chand & Co Pvt Ltd, Ramnager, New Delhi.
- 4. Bradley M.Pttern., (1957), Early Embryology of the Chick IV Ed., McGraw Hill Book company, Newyork.
- 5. Bradley M.Pattern., (1948), Embryology of the pig III Ed., McGraw Hill Book Company Newyork.

K1	CO 1	To get acquaintance with the theories of Developmental Biology.				
K2	CO2	To gain in-depth knowledge in the developmental stages of				
		Embryogenesis.				
K2	CO3	To understand the embryological process of different organisms.				
K2	CO4	To comprehend the process of organogenesis.				
K3,K5	CO5	To acquire better understanding of scientific reasoning exhibited in				
		experimental life science.				
K3,K4	CO6	To han enhanced knowledge and appreciation of life cycle transitions				
		like Metamorphosis and Regeneration.				

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC5	Batch	2019-2021
Hrs/week	6	Semester	II
Credits	5	Course Title	Core V - Environmental Biology and
			Biodiversity

- > To know the effects of population and its control measures.
- > To know about the resources of energy, environmental Pollution and disaster and management.

Unit	Content	Hrs
	Environment And Ecosystem	
I	Environment: Segments of environment, Atmosphere - Structure, Air as an	
	ecological factor. Hydrosphere: Physico- chemical aspects -River and Sea,	15
	Hydrological cycle. Lithosphere- Process of soil formation, Soil profile, Soil	
	texture and major soil types of India.Dynamics of Ecosystem: Primary and	
	Secondary productivity, Energy flow and Ecological energetics.	
	Population And Community Ecology	
	Population and Community Ecology: The population concept- Natality,	
II	Mortality, Growth rate, Population density and Age distribution, Carrying	15
	capacity, Fluctuation and Regulation. Community structure - influence of	
	competition - influence of predation and disturbance. Community succession	
	and Climax stage.	
	Resources And Energy	
	Renewable resources – Sola renergy, Biogas, Wind energy, Ocean energy and	15
III	geothermal energy. Petro plants for future fuel and Bio energy from waste.	
	Non-Renewable resources - Fossil fuels, nuclear fuels, Petroleum and Natural	
	gas	
	Environmental Pollution	
	Environmental Pollution: Types of environmental pollution and their biological	
IV	effects. Air Pollution, leprosy in Tsj MAhal, Bhopal gas disaster soil and water	15
	pollution- causes, effects and control. Minimata disease Environmental	
	awareness. Organizations involved in environmental protection - Principles of	
	conservation: Application of ecological principles - germplasm conservation.	
	Environmental laws.	
	Environmental Disaster And Management	
V	Environmental Disaster and Management: Effect of climate change, global	15
	warming and its effect on living organisms – Tsunami, Cyclone Earth Quake,	
	Flood: Causes, consequences, control and management. War and its impact on	
	environment.Ecoterrorism,Remediation and reclamation of the Environment-	
	Role of microbes in bioremediation.	
	Biodiversity	15
	Definition, Biodiversity-Hot spot, Insitu, Exsitu conservation, indices, levels	

	and loss. Remote Sensing and GIS in Biodiversity, Biodiversity and climate			
VI	change. Project Tiger and Project Elephant. Wild life management in India.			
	endangered species, Red data book.			
Total contact hours		90		

- 1. Odum EP (2008) Fundamentals of Ecology, Cengage Learning (Thompson), USA.
- 2. Asthana, D.K. and Meera Asthana,(1999) Environment Problems and Solutions, S.Chand and Company Ltd, New Delhi
- 3. Sharma, P.D. (1999) Ecology and Environment, Rastogi Publications, Meerut.
- 4. Smith TM and Smith RL (2008) Elements of Ecology (7th Edition), Benjamin Cummings.
- 5. V K Agarwal, P S Verma(2015)- Environmental Biology S. Chand Publisher, New Delhi.
- 6. Clark RS (2001) Marine Pollution, Clanderson Press Oxford, New York
- 7. Agarwal, K.C. (1996) Biodiversity, Agro Botanical Publishers (India).
- 8. Asish Ghosh, (2008) Environmental Conservation Challenges and Actions, APH Publishing Corporation, New Delhi.
- 9. Kumar, H.D (2003) Biodiversity and Sustainable Conservation, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.

K2	CO 1	To understand the various factors of environment
K2	CO 2	To know the effects of population and its control measures
K3	CO 3	To know about the resources of energy
K4	CO 4	To comprehend environmental pollution and disaster and management
K4	CO 5	To gain knowledge of the various factors of environment.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC6	Batch	2019-2021
Hrs/week	6	Semester	II
Credits	5	Course Title	Core VI -Bioinformatics

- > To know the applicability of bioinformatics in various fields.
- > To compare and group data in biological meaningful way.
- > To gain knowledge of computational analysis of genes and proteins.

Unit	Content	Hrs
	Basics of Bioinformatics	
I	Introduction to Bioinformatics, important contributions, sequence development,	
	aims and tasks, Fields related to Bioinformatics, Applications of Bioinformatics	15
	in various fields.	
	DNA and Protein Sequencing Analysis	
	Genomics and proteomics, genome mapping, DNA sequencing methods-	
II	Maxam and Gilbert method, Sanger's method, automated DNA sequencing.	15
	Protein sequencing-Sequence determination from DNA,Edman degradation	
	method, Mass spectrometric method.	
	Genomics	4=
***	Human Genome Project – Companies involved in HGP – Potential benefits of	15
III	HGP.	
	Gene expression analysis – Microarray. Databases	
	Importance of databases, nucleic acid sequence databases EMBL, Gen Bank,	
	protein sequence databases- SWISS PROT, TrEMBL, and PIR, structure of	
	databases, uses of databases. Objectives of biological databases	
	Proteomics	
	Proteomics: Protein structures – Primary, Secondary & Tertiary – Protein	
IV	Structure Predictions: a). Ab – intio modeling and Identification of conserved	15
	and variable regions. b) Comparative modeling – homology modeling and	
	protein threading. Protein. Structure prediction software available in the web.	
	Sequence Alignment	
	Algoritm, goals and types of alignment, study of similaries, scoring mutation,	15
	depletion and substitutions, sequence alignment methods.	
\mathbf{V}	Pairwise sequence alignment - Dot matrix, Dynamic Programming & word or	
	K tuple, FASTA, BLAST. Multiple Sequence Alignment- Dynamic	
	programming, progressive and Iterative method CLASTAL W.	
	Pharmacogenomics	15
VI	Molecular Docking: Protein – Protein Docking, Drug designing – Objectives,	
	rational drug design – examples of designed drugs – drug development –	
	Pharmacogenomics – uses of Pharmacogenomics.	00
	Total contact hours	90

- 1. S.Ignacimuthu., (2005), Basic Bioinformatics, III Ed., Narosa Publishing House Pvt. Ltd.
- 2. Prakash S Lohar., (2009), Bioinformatics, I Ed., MJP Publishers.
- 3. BG Curran., (2010), Bioinformatics, I Ed., CBS Publishers & Distributers.
- 4. M.Rajadurai (2010) Bioinformatics A Practical Manual I Ed., PBS Book Enterprises.
- $5.\ T\ K\ Attwood\ \&\ D\ J\ Parry\ Smith.,$ (2008), Introduction to Bioinformatics, I Ed., Himalaya Publishing House.

K2	CO 1	To gain knowledge of the basics of biological concepts.
K3	CO 2	To know to use information technology tools to understand biology.
К3	CO 3	To know to organize and preserve of biological data.
K4	CO 4	To analyze development of resources and interpret the results.
K5	CO 5	To gain knowledge of the immediate needs in pharmaceutical industries.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZP2	Batch	2019-2021
Hrs/week	6	Semester	II
Credits	5	Course Title	Core Practical II- Developmental Biology,
			Environmental Biology & Biodiversity and
			Bioinformatics

- ➤ To introduce practical knowledge about animal development.
- To know about the environment.
- > To enable the beginners to know about biological databases.

Content

Developmental Biology

- 1 .Early Embryonic development of Frog Observation of 2 cell, 4 cell, 8 cell, 16 cell, Blastula, Gastrula and Yolk plug stages.
- 2. Temporary Mounting of Chick Blastoderm
- 3. Early Hours of Chick development Observation of various stages 24,48,72 and 96 hrs of chick blastoderm.
- 4. Induced Ovulation in Frog. (Demonstration only)
- 5. Effect of Thyroxine Hormone on Amphibian Metamorphosis (Demonstration only)

Spotters:

Types of eggs & sperms.

Development of Brain, eye, heart and ear in Frog.

Environment Biology

- 1. Estimation of primary productivity by using aquatic plants Light and Dark bottle method.
- 2. Analysis of Water samples Estimation of dissoled Carbon dioxide, Carbonate and Bicarbonate.
- 3. Analysis of Soil Samples Determination of Soil moisture, Soil Texture, Humus and Chloride.
- 4. Measurement of biodiversity Alpha and Beta diversity Indices.
- 5. Pollution bioindicators Chironomus larva, Mosquitoelarva, Leech, Pila and Tilapia.

Bioinformatics

- 1. Accessing EBI website for downloading an entry of human lysosomal alpha glucosidase gene
- 2. Accessing GenBank website and downloading of file.
- 3. Accessing DDBJ website and downloading of file.
- 4. Accessing SWISS-PROT Database and downloading of file.
- 5. Accessing PDB website and downloading of file of protein structure
- 6. BLAST similarity search for nucleotide sequence.
- 7. BLAST similarity search for amino acid sequence.
- 8. FASTA similarity search for nucleotide sequence.
- **9.** FASTA similarity search for amino acid sequence.

K3	CO 1	To gain knowledge of the basic applications of embryonic development				
К3	CO 2	To comprehend the environmental assessment strategies and management				
		systems.				
К3	CO 3	To comprehend embryonic formation and developmental stages with				
		suitable example.				
K4	CO 4	To analyze the development of rapid sequencing technique.				
K5	CO 5	To apply the advancement of computer based technology in life sciences.				

Programme	PGZOOA	Programme	Zoology
code			
Course code	MPZE2	Batch	2019-2021
Hrs/week	6	Semester	II
Credits	4	Course Title	Elective II - Biostatistics & Computer Applications

- > To study the fundamentals of biostatistics and computer applications.
- > To study the application of biostatistics for testing hypothesis.
- > To communicate the results of statistical analysis accurately and effectively.

Unit	Content	Hrs	
	Measures of Central Tendency		
I	Measures of central tendency- Mean Median, Mode- for individual	15	
	observations, discrete series and continuous series.		
	Measures of Dispersion		
II	Measures of dispersion: Range, Standard deviation, Standard error, variance &	15	
	Coefficient of variation and mean deviation.		
	Statistical Methods		
III	Probability -Basic concepts, types, addition & multiplication Theorems of	15	
	Probability (only), Probability distribution – Normal, Binomial & Poisson		
	distribution.		
	Testing of Hypothesis, Student "t" test, Chi – square test& their properties and		
IV	uses. Correlation – Definition, Types & Methods of studying Correlation,		
	Regression Analysis –Methods, Estimation of unknown value from known	15	
	value – One way ANOVA		
	Computers		
V	Introduction to computers, Architecture of computers, mile stones and early	15	
	development, types of modern computers, Number system – Binary, Decimal		
	and Octal number system. Hard ware and software.		
	Databases		
	Symbols of databases, importance of databases-types, classification ,entries,	15	
VI	sequence formats, record, database management system, RDBMS, SQL, data		
	mining Computers and programs, Internet, world wide web, browsers and		
	search engines, statistical software available on web.	00	
	Total contact hours	90	

Reference books:

- 1. S.P. Gupta Statistical Methods
- 2. Norman T.J.Bailey Statistical Methods in Biology
- 3. S.S.Palanisamy & M.Manoharan Statistical Methods for Biologists.

- 4. Daniel, W.W, (1978 Biostastics. A foundation for Analysis in the Health Sciences. (Wiley Series in Probability and Statistics) 9th Ed., New York.
- 5. Biostatistics –P.Ramakrishnan (2010) Saras Publication.
- 6.PC software made simple by R.K.Taxali.

K2	CO 1	To understand the basic concept and application of biostatistics.
K2	CO 2	To know the application of biostatistics for testing hypothesis.
K3	CO 3	To understand the process of statistical analysis accurately and effectively.
K4	CO 4	To gain familiarity with the computer architecture.
K5	CO 5	To apply the knowledge of computer in the field of biology.

Programme	Programme PGZOOA Programme		Zoology
code			
Course code	MPZE2	Batch	2019-2022
Hrs/week	6	Semester	II
Credits	4	Course Title	Elective II: Biopharmaceuticals

- > To enable the students to know the actual path of metabolism of drugs and drug discovery.
- > To keep in mind the Routes of administration in biological systems and models

Unit	Content	Hrs		
	Biological Systems And Models:			
I	Routes of administration- adsorption enhancement- bioavailability- site specific	15		
	delivery; Pharmacodynamics of protein therapeutics- Inter species scaling			
	Drug Metabolism			
II	Oxidation- reduction- hydrolysis- conjugation. Need for developing new drugs:	15		
	Procedure followed in drug design; Prodrug and soft drugs; Drug toxicity.			
	Drug discovery & cardiovascular drugs:			
III	Substances derived from bacteria- plants- insects- and animals; Sources of	15		
	active principles; drugs used in atherosclerosis.			
	Pharmaceutical products:			
IV	Microbial products - Antibiotics (penicillin- streptomycin- tetracycline)-			
	vitamins -probiotics. Animal vaccines- Anti platelets drugs.	15		
	Pharmaceutical products of DNA technology:			
\mathbf{V}	Therapeutic proteins - Insulin- human growth hormone- Diuretics- clotting	15		
	factors-Vector usage strategies for gene therapy; Clinical trials.			
	Mechanism of hormone action			
	Peptide, steroid & thyroid, Hormonal disorders: Pancreas (Diabetes mellitus)	15		
VI	VI Thyroid (Goiter) Pituitary (Gigantism - Dwarfism) Sex hormones (Infertility).			
	Total contact hours	90		

Reference Books:

- 1. Heinrich Klefenz, (2002) "Industrial Pharmaceutical Biotechnology", WILEY-VCH Publication, Germany.
- 2. Daan Crommelin, & Robert D Sindelar, (2002) "Pharmaceutical Biotechnology", Tailor and Francis Publications, New York.
- 3. Jay P Rho and Stan G Louie, (2003) "Hand book of Pharmaceutical Biotechnology", Pharmaceutical products press, New York.
- 4. Lachman L Lieberman, HA, and Kanig, J, (1986) "Theory and practice of industrial pharmacy", 3rd edition, Varghese publishing & Co, New Delhi.
- 5. Remington's Pharamaceutial sciences, (2000) 18th edition, Mack publishing & Co., Easton, PA.

K2	CO 1 To implement the microbial products in pharmaceutical industry	
K2	K2 CO 2 To discuss the DNA technology in Pharmaceutical products	
К3	CO 3	To understand the drug metabolism
K4	CO 4	To implement the microbial products in pharmaceutical industry
K5	CO 5	To be an entrepreneur in pharmaceutical.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC7	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	5	Course Title	Core VII- Molecular Genetics

- > To understand the inheritance of genetic characters.
- > To acquire knowledge on sex determination, Hardy-Weinberg Law and Mutation.

Unit	Content	Hrs		
	Basics of Genetics - Ultra structure of genes-Gene Interaction - Allelic -			
I	Incomplete Dominance-Co-Dominance- Lethal Gene - Pleiotropism.			
	Non-allelic - Complementary factors - Supplementary factors - Epistasis -	15		
	Dominant - Recessive and Duplicate recessive Epistasis - Duplicating			
	factors.			
	Polygenic Inheritance - Skin colour in Man. Multiple Alleles ABO, Rh			
	and MN blood group inheritance. Role of Genes in Metabolism -			
II	Disorders of Phenyl alanine Metabolism only. Genetic code -	15		
	Characteristics of Genetic code - Deciphering of Genetic Code - invitro			
	and invivo codon Assignment - Wobble hypothesis.			
	Molecular mechanism of mutation -Mutagens - Radiation and Chemical -			
	Mutation Detection: ClB technique - Chromosomal : Change in Structure	15		
III	- Change in Number. Extra Nuclear Inheritance - Kappa Particles in			
	Paramecium - Shell coiling in snail Limnaea.			
	DNA: Denaturation and Renaturation. Replication models -			
	Semiconservative - Evidences - Meselson and Stahl, Tailor and Woods			
IV	Experiment – Uni and Bi-directional - Rolling Circle. DNA Demage and	15		
	Repair mechanisms. RNA: Processing of RNA- Types – mRNA-tRNA &			
	rRNA - Structure and Functions.			
	The Hardy- Weinberg Law. Algebriic proof for Hardy- Weinberg			
V	Equilibrium. Factors affecting Hardy Weinberg Equilibrium: Mutation -	20		
	Selection - Migration - Meiotic Drive -Non-random Mating - Genetic			
	Drift. Applications of Hardy- Weinberg Law: Calculating Gene			
	Frequencies - Autosomal loci, Two alleles - Co-dominant - Dominant and			
	Recessive - Multiple Alleles. Sex linked loci, Co-dominant - Dominant			
	and Recessive Alleles.	40		
	Contruction of Pedigree Chart. Mendelian Traits in Man. Human	10		
¥7¥	Karyotype Analysis. Sex determination: Sex determination in Man,			
VI	Drosophila, Fowl, Butterfly, Grasshopper and Honey bee.Sex			
	determination: Sex Linked Inheritance in Man – Colour Blindness and			
	Haemophilia.Sex Limited and Sex Influenced Genes in Man.	00		
	Total contact hours	90		

- 1. Eldon John Gardner*et al.*, (1991) Principles of Principles of Genetics "VIII Edition Johnwiley and son's. Inc, Newyork.
- 2. W.Strickberger, (1976), Genetics, III Edition, Macmillan Publishing Co., Newyork.
- 3. Willium d. Stansfield, (1969), Theory and Problems of Genetics, Mc Craw- Hill Book Company,,(1968) Newyork.
- 4. Mckusick, V.A., HumanGenetics, Prentice-Hall of India Private Limited, Newyork.
- 5. Lewin., (1999) Genes, VI Edition., Oxford University Press, Oxford.

K1	CO 1	To be acquainted with genetic Terminologies, Mendelian inheritance and gene		
		interaction.		
K5	CO2	To know to deploy the role of mutation in genetic disorders and diseases.		
K2	CO3	To gain better knowledge on methods of sex determination.		
K4,K5	CO4	To be able to do comprehensive and detailed analysis of the structure and		
		function of genetic material.		
K3,K5	CO5	To be able to explore the applications of Hardy-Weinberg law.		

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC8	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	5	Course Title	Core VIII - Sericulture

- > To enable the students to learn the basics of silk worm rearing techniques.
- > To understand the economic importance of sericulture.

Unit	Content	Hrs		
	General Aspects of Silkworms			
I	Taxonomy-Systemic position of Mulberry Silkworm. Types of Silkworms-			
	Mulberry and Non- Mulberry Silkworms.General aspects of Non-Mulberry	14		
	Silkworms –eri, Muga, Tasar. Races of mulberry silkworms.			
	Moriculture			
	Classification of Mulberry, Popular varieties in India, Draught Resistant			
II	varieties, Selection of land and Methods of cultivation of mulberry Methods of	14		
	Propagation, Manuring ,Pruning, Harvesting and Storage of leaves. Pests and			
	diseases – Fungal, Bacterial and Viral diseases and their control.			
	Silkworm Biology			
	Morphology –Structure of egg,Structure and Sexual Dimorphism in larva, pupa			
III	and adult. Anatomy-Silk gland, Digestive, Respiratory and Reproductive system.	14		
	Life cycle of Bombyx mori, Role of Hormones in Metamorphorosis and			
	Moulting.			
	Grainage Technology			
	General account on grainages, Breeding stations (P4, P3, P2 and P1). Grainages:			
IV	Procedures in grainages – Rearing of Parental Seed cocoon, Seed Cocoon Procedures in grainages – Rearing of Parental Seed cocoon, Seed Cocoon Procedures in grainages – Rearing of Parental Seed cocoon, Seed Cocoon			
	Preservation, Separation of Sexes, Moth Emergence, Pairing and Ovipositions,	1.0		
	Methods of Industrial Egg Production, Mother Moth Examination. Voltininsm,	16		
	Diapausing and Non – diapausing egg, Artificial hatching of Diapause eggs - Hot			
	Acid Treatment and Cold Acid Treatment, Acid treatment after Chilling,			
	Incubation.			
	Silkworm Rearing Rearing House and Rearing Appliances Rearing approximations. Disinfection			
	Rearing House and Rearing Appliances.Rearing operations —Disinfection methods, Brushing, bed cleaning and Feeding. Maintenance optimum			
V	environmental conditions in the rearing room and Selection of ripe worms,			
•	Spinning, Mounting, Harvest, Identification and separation of defective and			
	diseased cocoons, Storage and Transport of cocoons, Cocoon Marketing. Rearing	16		
	methods: Chawki worms Rearing and Rearing of late age worms. Diseases of	10		
	Silkworm: Viral, Bacterial, Fungal and Protozoan diseases – Pathogens, Mode of			
	infection, Prevention and Control measures. Pests of Silkworm.			
	Silk Reeling			
	Steps to be followed before Reeling - Stifling, Drying and Storing, Cooking and			
VI	Boiling, Deflossing and Ridding. Process of Reeling- Reeling appliances,	16		

ĺ	Methods of reeling - Charka, Cottage basin and Filatures .Re-reeling, Lacing		
	skeining, Booking, Raw silk testing and uses of Silk.		
ĺ	Total contact hours		

- 1. G.Ganga., (2003), Comprehensive Sericulture, Oxford and IBH Pub., Co., Pvt., Ltd., New Delhi.
- 2. S.Krishnaswamy *et al.*, (1972), Sericulture manual -1 (Mulberry cultivation), Manual -2 (Silkworm rearing) and Manual -3 (Silk reeling), Food and Agriculture Organization of the United Nations, Rome.
- 3. Hiroo, Sibuya Ku., (1975) Text book of Tropical Sericulture, Japan Overseas Corporation, Volunteers 4-2, 24, Tokyo, Japan.
- 4. Venkata Narasaiah (2003), Sericulture in India, Ashish Publishing House, New Delhi.
- 5. Silk Production, (2004), Dr.N.G.Ojha, Dr.P.N.Panday APH Publishing Corporation, New Delhi.

K2	CO 1	To gain knowledge of the basics of silk worm rearing techniques.	
K2	K2 CO 2 To understand the economic importance of sericulture.		
К3	K3 CO 3 To gain knowledge on the basic facts about grainages.		
K4 CO 4 To know about the silk reeling and cocoon marketing.			
K5 CO 5 To obtain knowledge on the basic facts about grainages and silk reeling			

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC9	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	5	Course Title	Core IX - Biotechnology

- > To facilitate at all levels to develop as outstanding scholars/teachers/Career women/Entrepreneurs and responsible leaders by applying their knowledge in life sciences for betterment of society.
- > To know the recent trends in Biotechnology and make the students to understand the integral application of biotechnology in various fields.

Unit	Content	Hrs		
I	Tools of Genetic Engineering Restriction endonuclease – Nomenclature – DNA Ligase – Reverse transcriptase – DNA Polymerase. Cloning vectors – Plasmids, Phages, Cosmids and animal viral vector. (S40, BPV and Baccula virus).	15		
II	Techniques of Genetic Engineering Gene cloning methods - microinjection, Electroporation, Liposome mediated gene transfer, Retroviral method. PCR - methods and application. Blotting techniques - Southern, Northern and Western Blotting. Construction and Screening of gene libraries.	15		
Ш	Animal Cell Culture Culture technique - Primary and Secondary culture. Cell line, Stem cell Biology – Embryonic stem cell and adult stem cell. Organ culture – methods of organ culture – Artificial Skin and Cartilage. Transgenic animals and its application – Fish, mice, sheep and cow.			
IV	Industrial Biotechnology Strain improvement for industrial important secondary metabolites — Bioprocess operations — Downstream process, Ore leaching — cellulose utilization — Alcohol production, Antibiotic biosynthesis. Isolation and Purification of Enzymes — Enzyme immobilization.	15		
V	Biotechnology and Human Welfare r-DNA protein in medicine – Insulin, Interferon, Blood products – Thrombolytic (tPA) blood clotting factor (factor VIII). Gene therapy – somatic and germline therapy. Vaccines – Recombinant Hepatitis B vaccine and FMD vaccine, Live virus vaccine, Malaria vaccine and DNA vaccine.	15		
VI	Applied Biotechnology Use of DNA finger printing in forensic science, role of Micobes in biotechnology. Intellectual property rights and Patent. Nanotechnology –	15		

- 1. R.C.Dubey, (1993), A Text book of Biotechnology. III Ed., S.Chand & Company Ltd.
- 2. H.K.Das, (2004), Text book of biotechnology III Ed., Wiley India (P) Ltd.
- 3. U.Satyanarayana, (2005), Biotechnology, Arunabha sen (P) Ltd.
- 4. Mohan P.Arora, (2003), Biotechnology, I Ed., Himalaya Publishing house.
- 5. V.Kumaresan, (1994), Biotechnology VI Ed., Himalaya Publishing house.

K1	CO 1	To understand the basic principles and application of Genetic			
		Engineering.			
K2,K3	CO2	To comprehend the principles and methods of Gene cloning, understand			
		the Construction of c-DNA library and also the application of PCR,			
		blotting techniques.			
K3,K6	CO3	To elucidate transgenesis and invitro culture techniques of animals.			
K3,K4	CO4	To gain knowledge about basic principles and applications of Bio			
		techniques in Industry.			
K3,K6	CO5	To apply their Knowledge in the production and application of Human			
		Health care products and learn the importance & social implications of			
		Gene therapy.			
K3,K4	CO6	To know the basic principles and application of forensic science and also			
		gain knowledge on application of nano structures in Bio medical science.			

Programme code	PGZOOA	Programme	Zoology
Course code	MPZP3	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	5	Course Title	Core Practical III- Molecular Genetics,
			Sericulture and Biotechnology

- ➤ To obtain practical knowledge in genetics, sericulture and biotechnology.
- ➤ To keep in mind about the basic technologies applied in Biotechnology.
- ➤ To understand the concepts of genetics through experiments.

CONTENT

Molecular Genetics

- 1. Mendel's Law of Segregation with Beads of Two different Colours.
- 2. Mendel's Law of Independent Assortment with Beads of Four different Colours
- 3. Probability- Tossing of Coins.
- 4. Correlation of Length and Width of leaves.
- 5. Observation of Simple Mendelian Traits.

Spotter

- ➤ Chromosomal Disorders in Man Down's Syndrome, Turner's Syndrome, Klinefelter's Syndrome
- > Sex Linked Inheritance in Man -Colour Blindness and Haemophilia.
- Extra Nuclear Inheritance Kappa Particles in Paramecium Shell coiling in snail Limnaea.
- ➤ Multiple Alleles ABO, Rh blood group.
- Barr body.
- ➤ Twins Mono and Dizygotic Twins
- Pedigree Chart

Sericulture

- Morphology of Egg, larva. Pupa and adult moth
- ➤ Life cycle of Silk worm
- ➤ Mouth parts of Silkworm
- ➤ Silk gland of Silkworm
- Digestive system of Silk worm
- ➤ Rearing House
- Rearing appliances
- > Egg card
- Mountages
- ➤ Identification of Diseased worms
- ➤ Identification of Non Mulberry Silkworm

- > Reeling appliances: three pan system, Jettebout, Croissure,
- > Field visit Report

Biotechnology

- 1. Extraction of DNA
- 2. Extraction of RNA
- 3. Agarose gel Electrophoresis
- 4. PAGE
- 5. PCR (Demonstration only).
- 6. Transgenic techniques-Micro injection and Electroporation (Demonstration only).

К3	CO1	To understand the Mendelian Laws through Experiments		
K4	CO2	To be able to perform, analyze and report on experiments and		
		observations in Genetics		
K5	CO3	To understand safe laboratory practices and to conduct independent work		
		in a laboratory.		
K5	CO4	To understand the procedure for Silkworm rearing		
K5	CO5	To analyze the biotechnological areas.		

Programme code	PGZOOA	Programme	Zoology
Course code	MPZE3	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	4	Course Title	Elective III - Evolution

- > To understand the unity of life with the rich diversity of organisms and their ecological and evolutionary significance.
- > To know about the basic concepts of Evolution.

Unit	Content	Hrs		
	Theories			
I	Historical development and concept of evolution - Theory of special creation.			
	Theory of spontaneous generation or Abiogenesis, Biogenesis. Biochemical	15		
	Origin of Life, Urey and Miller"s Experiment.			
	Evidences and Fossils			
II	Evidences from Morphology, Comparative anatomy and Palaeontology. Fossils –	15		
	Definition, formation of Fossils, Fossilization – Petrification, preservation – foot			
	prints or trails, moulds and casts, impressions, preservations in resins and ambers,			
	dating of fossils - radioactive clock methods. Radioactive Carbon method,			
	Potassium – Argon method. Significance of study of fossils.			
	Theories of Evolution			
	Lamarckism, criticism of Lamarckism, Neo – Lamarckism, Darwinism, criticisms			
III	of Darwinism, Neo- Darwinism, certain generalizations about Evolution -	15		
	Atavism, Williston"s Rule, Cope"s Rule and allometry.			
	Mechanism of Evolution			
	Variations - kinds of variation, sources of variation. Hybridization in Evolution –			
IV	Introgressive hybridization. Polyploidy in Evolution. Isolating mechanisms -			
	Prematic mechanisms and posmating mechanisms. Role of isolation in Evolution.			
	Natural selection – Nature of natural selection – differential reproduction, Types			
	of Natural selection. Mutation as raw materials for Natural Selection.			
	Speciation			
	Species – Morphological, Genetic and biological species concept, sibling species,			
	monotypic and polytypic speciation. Subspecies categories – Clines and Demes,			
V	Orgin of species – factors causing Genetic Divergence in the population of	15		
	species Patterns of speciation – Allopatric, Sympatric, Quantum and Parapatric			
	speciation			
	Evolution of Man			
	Human Evolution- place of origin, time of origin, causes of Evolution of Man,			
VI	characteristics of Man. Evolutionary trends, Evolution of Man as seen in fossil	15		
	record - Propliopithecus, Dryopithecus, Oreoopithecus, Ramapithecus and			
	Australopithecus (first Man – Ape), Homoerectus – Java and			
	Peking Man. Homosapiens – Heidelberg Man, Neanderthal Man, Solo man,			

	Rhodesian Man, Cro- Magnon Man (Homo sapiens sapiens) Culture and Control	
	of Evolution – learning society and culture, relative rates of culture of Biological	
	Evolution and Social Darwinism.	
Total contact hours		

- 1. Paul Amos Moody, 1978, Introduction to Evoution, Kalyani Publishers, New Delhi.
- 2. Theodosius Dobzhansky, Francisco J. Ayala, G. Ledyard Stebbins, James W. Valentine, 1973, Evolution, Surject Publications, New Delhi. E.Peter Volpe, 1989, Understanding Evolution, Universal Book Stall, New Delhi.
- 3. Mohan, P. Arrora, 2000, Organic Evolution Himalayan Publishing House, New Delhi.
- 4. G.L Stebbins, 1979, Process of Organic Evolution, Prentice Hall India, New Delhi. Monroe.W.Strickberger,2000 Evolution, Jones & Barlett publishers, Boston

K2	CO1	To understand the concepts of origin of life and their evolution in	
		different Past Eras	
К3	CO2	To understand different theories of evolutionary concepts	
K5	CO3	To know well about the Adaptations, Adaptive Radiations with	
		appropriate examples	
K4	CO4	To Understanding of genetic basis of evolution, human karyotyping	
		and speciation.	
K2	CO5	To have a knowledge about the origin and evolution of Human and	
		mile stones of cultural evolution	

Programme code	PGZOOA	Programme	Zoology
Course code	MPZE3	Batch	2019-2021
Hrs/week	6	Semester	III
Credits	4	Course Title	Elective III: Food and Nutrition

- > To understand the nutritive Values of various foods.
- > To recollect the concept of nutritive foods.

Unit	Content	Hrs
I	The scope of food and nutrition.	15
	Composition of food (Protein –Carbohydrate – Fat-Vitamins and Minerals).	
	Measurement of energy and energy values of various food.	
II	Nutritional requirements – children, adolescence, old age.	15
	Balances diet.	
	Milk – Types – importance in the diet.	
	Eggs – Structures and composition – importance in the diet.	
III	Meat – Types – importance in the diet.	15
	Fish – Types - importance in the diet.	
IV	Vegetables – Types - importance in the diet.	15
	Fruits – Types - importance in the diet.	
	Cereals and pulses – Types- importance in the diet.	
	Food spoilage.	
\mathbf{V}	Food poisoning- food borne diseases.	15
	Food adulteration.	
	Function and sources of food.	
	Digestion and absorption.	
VI	Methods of purification of potable water.	15
	Food laws	
	Food grading fassi, agmark.	
	Total contact hours	90

Reference Books:

- 1. Anita Tull, (1987) 1st edition. Food and nutrition Oxford University press. Cambridge.
- 2. Srilakshmi, B. (2012) 5th edition. Food Science, New age International Publishers, New Delhi.
- 3. Swaran Pasran Pasricvha, (2000) 1st edition. Count what you eat NIN Hyderabad.
- 4. Tripathy, S. N. (2004) 1st edition. Food Biotechnology. Dominant Publishes and distributors, New Delhi. 110002.
- 5. Srilakshmi, B. (2012) 6th edition. Dietetics, New age International Publishers, New Delhi

K2	CO1	To understand the energy values of various foods.	
К3	CO2	To apply the importance of food chart.	
K5	CO3	To analyze the food deficiency diseases.	
K4	CO4	To know about the food borne diseases.	
K2	CO5	To avoid malnutrition.	

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC11	Batch	2019-2021
Hrs/week	6	Semester	IV
Credits	5	Course Title	Core X: Animal Physiology

- > To understand the structural organization and functions of different organ systems within the body.
- > To impart knowledge of the various metabolic and physiological mechanisms of the human body.

Unit	Content	Hrs
	Cell Membrane, Homeostasis, Nutrition and Digestion	
I	Properties of Cell Membrane: Transport across cell membrane and Ionic basis of	
	Cellular Excitability.	15
	Nutritive Patterns: Origin of Nutritive Type, Feeding Pattern.	
	Digestion and Absorption	
	Respiration & Circulation	
	Respiration: Respiratory organs, Respiratory pigments, Transport of Respiratory	
II	Gases, Oxygen as a limiting factor in the environment.	15
	Circulation: Circulating fluids – Cytoplasm, Hydrolymph, Hemolymph, Lymph	
	and Blood, Mechanism of Blood coagulation and Hemodynamic	
	Heart - Structure, Origin and Conduction of Heart beat.	
	Excretion, Osmoregulation and Thermoregulation	
	Excretion: Organs of Excretion, Structure of Nephron - Juxtraglomerular	
III	apparatus of Nephron. Physiology of Urine Formation & Counter Current	
	mechanism. Renal regulation of Acid - Base balance. Urine Composition.	
	Osmoregulation: Maintaining Water and Electrolyte balance – Living in	15
	Isosmotic, Hyposmotic, Hyperosmotic and Terrestrial Environments. Hormonal	
	regulation of water and Electrolytes.	
	Thermoregulation: Temperature and rate of biological activities, Temperature	
	compensation in Poikilotherms and Homeotherms.	
	Nervous Integration	
	Structure of Neuron, Fundamentals of nerve impulse – Resting potential, Action	
IV	potential, Role of Ion channels.	15
	Transmission of nerve impulse: Excitation, Conduction Interneuronal	
	transmission - Ephatic and Synaptic transmission, Chemical synapses and Neuro	
	muscular junction. Neurotransmitters.	
	Muscle and Receptors	
	Muscle system- Ultra structure of Muscle Fibres, Mechanism of Muscle	4-
V	Contraction - Biochemical changes during Contraction, Energetic of Muscular	15
	contraction.	
	Receptors : Photoreceptor, Chemoreceptor, Mechanoreceptor and Thermo	
	receptor.	

	Endocrine Regulation on Reproduction	
	Vertebrate controls: Hypothalamic hormones – Gonadotrophins, Gonadal steroids	
VI	Estrogen & Progestron. Regulation of Breeding cycle – Oestrous & Menstrua	
	cycles. Placental Hormones , Relaxin and the hormones associated with	
	Parturition.	
	Total contact hours	90

- 1. William S. Hoar, General and Comparative Physiology Prentice Hall of India (private) Ltd, New Delhi.
- 2. C.Ladd. Prosser, Frank A. Brown, Comparative Animal Physiology, II Ed., W.B. Saunders company, London.
- 3. Kunt sachmidt- Nielsen, (2013), Animal physiology: Adaptation and Environment- III Ed., Press syndicate of the University of Cambridge, London.
- 4. Elaine ,N. Marieb,(2006), Human Anatomy & physiology, VI Ed., Dorling Kindersley (India) Pvt.Ltd.,
- 5. Christopher D. Moyes & Patricia M.Schulte., (2007), Principles of Animal Physiology, Dorling Kindersley (India) Pvt.Ltd.,

K2	CO 1	To gain knowledge of the feeding mechanism, Internal transport and gas
		exchange and discerning acid – base balance.
K2	CO 2	To know about the regulation of heart beat and blood pressure, neural and
		chemical regulation of respiration and transfer of air,
K2	CO 3	To perceive the osmoregulation, kidney function and pattern of excretion
K4	CO 4	To understand the concept of Thermoregulation – Heat balance in animals,
		Adaptations to temperature extremes, Aestivation and Hibernation and
		Counter current Heat exchangers,
K2	CO 5	To be able to sense the environment through Receptors.

Programme code	PGZOOA	Programme	Zoology
Course code	MPZC11	Batch	2019-2021
Hrs/week	6	Semester	IV
Credits	5	Course Title	Core X: Immunology

- > To acquire knowledge on immunity and immune system.
- > To understand the significance of the organs and cells and their functions during the immune reactions.

Unit	Content	Hrs
	Basics of Immunology	
Ι	History and scope of immunology. Types of immunity – innate, acquired, passive	
	and active. Physiology of immune response – humoral and cell mediated immunity.	15
	Lymphoid organs – primary and secondary. Cells of immune system – ontogeny	
	and development of cells in innate and adaptive immune system. Hematopoiesis	
	and stem cells.	
	Cells And Tissues of the Immune System	
	Histology of Lymphoid organs - Primary and Secondary lymphoid organs. T and B	
II	lymphocytes. T- lymphocytes – T cell types, T cell Receptors,T cell surface	15
	markers -T cell regulation- T- cell maturation. B- lymphocytes - B cell types - B	
	cell receptors- B- cell activation –proliferation –maturation. Difference between T	
	and B lymphocytes. Null cells, Macrophages, Polymorphonuclear leucocytes	
	(PMN).	
	Immune Responses of Antigen and Antibody	
	Antigens – characteristics, types, cross reactivity, hapten, adjuvant,	
III	immunogenicity and antigenicity. Immunoglobulins – structure, types and	15
	functions. Synthesis of Immunoglobulin, Genetic basis of Class Switch.	
	Antigen and Antibody Reactions	
TX 7	Immuno diagnosis based on antigen and antibody interaction: Precipitation –	
IV	Precipitation reactions in gel (Immunodiffusion) – Applications of Precipitation.	
	Agglutination, - Agglutination reactions - Coombs test, Positive Agglutination,	15
	Agglutination inhibition. Immunofluorescence and Flow cytometry. Complement System -Complement Fixation - Role of Complements in Immune Response.	15
	Hypersensitivity Reactions.	
	Vaccines and Health	
	Major Histocompatibility Complexes (MHC) in man. Immune deficiency disorders	
\mathbf{V}	- T cells,B cells,phagocytic, natural killer cell associated diseases and AIDS.	15
•	Vaccines: Types—inactivated, subunit, synthetic, DNA and live attenuated vaccines.	10
	Immunity to Infectious Diseases	
	Tumour antigens, immune responses to tumour and immunotherapy of malignancy.	
VI	Immunity to infectious diseases – bacterial (Tuberculosis), viral (AIDS), protozoan	15
. —	and parasitic diseases (Malaria and Leishmaniasis).	
	Western Blotting. Hybridoma Technology - Monoclonal Antibodies.	
	Total contact hours	90

- 1. Kuby ., (1992), Immunology, IV Ed., W.H. Freeman and company.
- 2. Evan M.Roitt., (1988), Essentials Immunology- VI Ed., ELBS imprint.Shailendra Kumar Sinha., (2009) Serial dilution Technique.
- 3. Immunology and Medical Zoology- I Ed., Oxford Book Company.
- 4. 4. David male., (2008), Immunology VII Ed., Elsevier Health sciences.
- 5. I.Kannan., (2007), Immunology I Ed., MJP Publisher.

K1	CO 1	To gain knowledge of the immune system, principles of innate and adaptive
		immunity.
K2	CO 2	To understand the antigen recognition by immune cells
K2	CO 3	To know the illustration of Antigen processing and presentation to T
		Lymphocytes by antigen presenting cells and understanding the role of
		MHC Complex.
K5	CO 4	To analyze the consequence of immunodeficiency leading to diseases such
		as inherited acquired immunodeficiency disease, hypersensitivity diseases,
		autoimmunity and Transplant rejection.
K5	CO 5	To gain understanding of manipulation of immune responses for the benefit
		of mankind - vaccines

Programme code	PGZOOA	Programme	Zoolog	y			
Course code	MPZP4	Batch	2019-2	021			
Hrs/week	6	Semester	IV				
Credits	4	Course Title	Core	Practical	IV-Animal	Physiology	&
			Immun	ology			

- To study the basis for various systems in the Animal kingdom.
- > To understand about Immunity, Antigen, Antibody, Cells of the immune system and their functions and regulations.

CONTENT

Animal Physiology

- 1. Effect of Temperature on Oxygen consumption of fish & calculation of Q10
- 2. Effect of Temperature on Opercular movements of fish & calculation of Q10
- 3. Effect of salinity on Oxygen consumption of fish
- 4. Effect of salinity on Opercular movement of fish
- 5. Estimation of Salt loss in a fish
- 6. Estimation of Salt gain in a fish
- 7. Mounting of Haemin crystals.
- 8. Blood pressure recording
- 9. Estimation of Blood sugar.

Immunology

- 1. Virtual dissection and Display of Lymphoid organs
- 2. Isolation of Lymphocytes and enumeration from Human Blood
- 3. Bleeding and preparation of complement and antisera.
- 4. Electrophoretic separation of serum proteins
- 5. Haemagglutination (or) Haemolysin titration assay
- 6. Ammonium Sulphate Precipitation- Method of Antibody Production.
- 7. Ouchterlony technique Immunodiffusion (Demonstration only).
- 8. Immuno Electrophoresis of Human serum and Anti-Human Serum (Demonstration only).
- 9. ABO Blood Grouping and Rh typing.
- 10. Serum separation.
- 11. Qualitative detection of Antibodies to HIV-1 & HIV-2 in Human serum/ Plasma (Visit to immunology Lab)

K5	CO 1	To apply functional knowledge on various organs and its status
K4	CO 2	To comprehend physiological activity of organ systems
K6	CO 3	To understand the concepts and methodology to various immunological
		techniques
K5	CO 4	Knowledge of immune system by isolating of Lymphocytes and Antibodies

Programme code	ode PGZOOA Programme 2		Zoology
Course code	MPZPR	Batch	2019-2022
Hrs/week	12	Semester	IV
Credits	4	Course Title	Core I: Project Writing

- > To investigate the development of students' ability in research field.
- > To supply the students basic information on literature survey.

K5	CO 1	To prepare the students for further research.
K4	CO 2	To inculcate innovative ideas for modern science and technology development.
K6	CO 3	To be capable of writing research proposals for funding.
K5	CO 4	To become technically knowledgeable students