ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN

(AUTONOMOUS)

NATIONALLY RE-ACCREDITED WITH B++ GRADE BY NAAC

(Affiliated to Mother Teresa Women's University, Kodaikanal)

Chinnakalyamputtur, Palani

UNDER

CHOICE BASED CREDIT SYSTEM

ACADEMIC YEAR 2023 - 2025

P.G DEPARTMENT OF ZOOLOGY

M.SC. ZOOLOGY

SYLLABUS

BATCH: 2023 - 2025

P G ZOOLOGY DEPARTMENT FACULTY MEMBERS

Dr.R.UmaMaheswari, M.Sc.,M.Phil.,Ph.D Assistant Professor & Head
Mrs.P.Pavatharini, M.Sc.,M.Phil., Assistant Professor
Mrs.M.Latha Santhi, M.Sc.,M.Phil., Assistant Professor
Dr.S.Subhashini, M.Sc.,M.Phil.,Ph.D Assistant Professor
Mrs.K.P.Sasikala, M.Sc.,M.Phil., Assistant Professor
Mrs.J.R.Hemalatha, M.Sc.,M.Phil., Assistant Professor

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN

(Affiliated to Mother Teresa Women's University, Kodaikanal)

Nationally Reaccredited with B⁺⁺ Grade by NAAC

Chinnakalayamputhur, Palani - 624 615

PREAMBLE

The Department of Zoology are established as undergraduate Department in the year 1974 and upgraded as postgraduate in 1987. The Department is enriched by altruistic contribution of a galaxy of teachers. The Department is noted for its good academic record and well-established laboratories. The highlight of the Department is the active participation of the faculty members in Research with many International and National papers in reputed Journals, received many awards and Research grants from various funding agencies such as UGC, DST etc., Our Department tirelessly strives to work towards women's education at all level in the State to be a pioneer in the field of Women Empowerment by introducing relevant papers in the Curriculum to fulfill their local needs through the Board of Studies.

COLLEGE VISION

> Enlightenment and Empowerment of Rural Women.

COLLEGE MISSION

- > Providing high quality teaching learning environment with practical exposure
- > Imbibing research culture and collaborate programs with local communities
- > Imparting strong and supportive education to promote employability
- > Encouraging questioning spirit and self reliance

P.G DEPARTMENT OF ZOOLOGY

VISION

- > To create self confidence among the students through up-to-date curriculum designing.
- > To develop and maximize the learning competency.
- > To inculcate the social and moral values that enables the students to become a good citizen.
- > To develop true research attitude

MISSION

- > To provide the students with good quality education.
- > That integrates science, technologies and society and to perform value based realtime research activities and there by leaping to excellence.

Program outcome

PO1: Problem Solving Skill

Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.

PO2: Decision Making Skill

Foster analytical and critical thinking abilities for data-based decision-making.

PO3: Ethical Value

Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.

PO4: Communication Skill

Ability to develop communication, managerial and interpersonal skills.

PO5: Individual and Team Leadership Skill

Capability to lead themselves and the team to achieve organizational goals.

PO6: Employability Skill

Inculcate contemporary business practices to enhance employability skills in the competitive environment.

PO7: Entrepreneurial Skill

Equip with skills and competencies to become an entrepreneur.

PO8: Contribution to Society

Succeed in career endeavors and contribute significantly to society.

PO 9 Multicultural competence

Possess knowledge of the values and beliefs of multiple cultures and a global perspective.

PO 10: Moral and ethical awareness/reasoning

Ability to embrace moral/ethical values in conducting one's life.

PSO1 – Placement

To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Arulmigu Palaniandavar Arts College for Women, Palani

P.G. Department of Zoology, M.Sc. Programmes - 2023-2025

Semester-I	Cred	Но	Semester-II	Cred	Hou	Semester-III	Cred	Hou	Semester-IV	Cre	Hours
	it	urs		it	rs		it	rs		dit	
1.1. Core-I Structure and Function of Invertebrates	5	7	2.1. Core-IV Cellular and Molecular Biology	5	6	3.1. Core-VII Genetics	5	6	4.1. Core-XI Immunology	5	6
1.2 Core-II Comparative Anatomy of Vertebrates	5	7	2.2 Core-V Developmental Biology	5	6	3.2.Core-VIII Evolution	5	6	4.2. Core-XII Immunology in Lab course	5	6
1.3 Core – III Lab Course in Invertebrates & Vertebrates	4	6	2.3 Core – VI Lab Course in Cell Biology and Developmental Biology	4	6	3.3 Core – IX Animal Physiology	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective –I Molecules and their interaction relevant to Biology/Animal Behaviour	3	5	2.4 Discipline Centric Elective – III Apiculture / Economic Entomology	3	4	3.4 Core – X Industrial Module Medical Laboratory Techniques	4	5	4.4. Elective - VI (Industry / Entrepreneurship) 20% Theory 80% Practical: Aquaculture / Vermiculture	3	4
1.5 Generic Elective- II: Biostatistics / Biocomposting	3	5	2.5 Generic Elective -IV: Research Methodology/ Ecology	3	4	3.5 Discipline Centric Elective - V Sericulture / Stem cell biology	3	4	4.5. Skill Enhancement course / Professional Competency Skill: [SEC] – III Intellectual Property Rights	2	4
			2.6 NME I: Skill Enhancement Course [SEC] –I Poultry Farming	2	4	3.6 NME II:Skill Enhancement Course [SEC] - II Dairy Farming	2	3	4.6 Extension Activity	1	-
						3.7 Internship / Industrial Activity	2				
	20	30		22	30		26	30		23	30

Total Credit Points -91

Total number of hours: 120

P.G DEPARTMENT OF ZOOLOGY

M.Sc., Zoology

First Year- Semester-I

List of Courses	Title	Credit	No. of	Marks	
			Hours	CIA	EXT
Core Course - I	Structure and Function of	5	7	25	75
	Invertebrates				
Core Course - II	Comparative Anatomy of	5	7	25	75
	Vertebrates				
Core Course - III	Lab Course in Invertebrates &	4	6	25	75
	Vertebrates				
Elective Course -	Molecules and their interaction	3	5	25	75
I	relevant to Biology/ Animal				
	Behaviour				
Elective Course -	Biostatistics / Biocomposting	3	5	25	75
II					
		20	30		

Semester-II

List of Courses	Title	Credit	No. of Hours	Marks	
				CIA	EXT
Core Course - IV	Cellular and Molecular Biology	5	6	25	75
Core Course - V	Developmental Biology	5	6	25	75
Core Course - VI	Lab Course in Cell Biology and	4	6	25	75
	Developmental Biology				
Elective Course -	Apiculture / Economic	3	4	25	75
III	Entomology				
Elective Course -	Research Methodology / Ecology	3	4	25	75
IV					
Skill	Poultry Farming	2	4	25	75
Enhancement					
Course [SEC] -					
I(NME)					
		22	30		

Second Year

Semester-III

List of Courses	Title	Credit	No. of	Marks		
			Hours	CIA	EXT	
Core Course- VII	Genetics	5	6	25	75	
Core Course-VIII	Evolution	5	6	25	75	
Core Course-IX	Animal Physiology	5	6	25	75	
Core - X (Industry	Medical Laboratory Techniques	4	5	25	75	
Module)						
Elective Course -	Sericulture / Stem cell biology	3	4	25	75	
V						
Skill Enhancement	Dairy Farming	2	3	25	75	
Course – II						
(NME)						
	Industrial Entrepreneurship	2		-		
		26	30			

Second Year

Semester-IV

List of Courses	Title	Credit	No. of	Marks	
			Hours	CIA	EXT
Core Course-XI	Immunology	5	6	25	75
Core Course-XIII	Lab course in Immunology	5	6	25	75
	Project with VIVA VOCE	7	10	25	75
Elective Course -	e - Aquaculture / Vermiculture		4	25	75
VI					
Skill	Intellectual Property Rights	2	4	25	75
Enhancement					
Course-III /					
(Professional					
Competency)					
	Extension Activity	1	-	100	
		23	30		

P.G DEPARTMENT OF ZOOLOGY

OUTCOME BASED EDUCATION

Question pattern

CHOICE BASED CREDIT SYSTEM (CBCS)

Effect from the academic year 2023-24 onwards

INTERNAL QUESTION PATTERN

Section	Pattern	Marks	Total
A	1&2 Either or Pattern	2x 5	10
В	3&4 Either or Pattern	2x 10	20
		TOTAL	30

COMPONENTS OF INTERNAL ASSESSMENT

Components		Calculation					
Test I	30/2	<u>15+15</u>					
Test II	30/2						
		2	15				
Assignment	Assignment						
Seminar	5						
TOTAL INTERNAL MA	25						

EXTERNAL QUESTION PATTERN

Pattern	Marks	Total
1-5 Either or Pattern	5x5	25
6-10Either or Pattern	5x10	50
	TOTAL	75
	1-5 Either or Pattern	1-5 Either or Pattern 5x5 6-10Either or Pattern 5x10

EQUAL WEIGHTAGE TO BE GIVEN TO ALL THE SIX UNITS

PROGRA	MME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY	
COURSE	CODE		BATCH	2023-2025	
HOURS		7	SEMESTER	I	
CREDITS		5	COURSE TITLE	CORE I: Structure and F Invertebrates	unction of
Learning	g Objectives:	:			
The main	objectives o	f this course	are:		
LO1	To understa of invertebr	-	ot of classification a	and their characteristic features of r	major group
LO2	To realize th	ne range of di	versification of inv	ertebrate animals.	
LO3				tives of any taxon.	
LO4	To know the	e functional n	norphology of syste	em biology of invertebrates.	
Expected	l Course Ou	tcome:			
On the su	accessful com	pletion of the	e course, student w	ill be able to:	
CO1 Remember the general concepts and major groups in anim classification, origin, structure, functions and distribution of life in all forms.		v • 1			
CO2	CO2 Understand the evolutionary process. All are linked in a sequence of life patterns.				K2 & K4
CO3	Apply life for		professional work i	n agriculture and conservation of	K3 & K5
CO4 Analyze what lies beyond our present knowledge of life process.				knowledge of life process.	K4 & K6
CO5	EVALUATE and to create the perfect phylogenetic relationship in K5				

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

classification.

	Units							
I	Principles of Animal taxonomy; Species concept; International code of zoological							
1	nomenclature; Taxonomic procedures; New trends in taxonomy							
	Organization of coelom: Acoelomates; Pseudocoelomates; Coelomates: Protostomia							
II	and Deuterostomia; Locomotion: Flagella and ciliary movement in Protozoa;							
	Hydrostatic movement in Coelenterata, Annelida and Echinodermata							
	Nutrition and Digestion: Patterns of feeding and digestion in lower metazoan; Filter							
	feeding in Polychaeta, Mollusca and Echinodermata. Respiration: Organs of							
III	respiration: Gills, lungs and trachea; Respiratory pigments; Mechanism of							
111	respiration							

	Excretion: Organs of excretion: coelom, coelom ducts, Nephridia and Malpighian					
	tubules; Mechanisms of excretion; Excretion and osmoregulation. Nervous system:					
IV	Primitive nervous system: Coelenterata and Echinodermata; Advanced nervous					
	system: Annelida, Arthropoda (Crustacea and Insecta) and Mollusca (Cephalopoda);					
	Trends in neural evolution.					
	Invertebrate larvae: Larval forms of free-living invertebrates - Larval forms of					
\mathbf{V}	parasites; Strategies and Evolutionary significance of larval forms. Minor Phyla:					
	Concept and significance; Organization and general characters.					

1. Barrington, E. J.W. 1979. Invertebrate Structure and Function. The English Language Book Society and Nelson, pp-765.

Recommended texts

- 1. Barnes, R. D. 1974. Invertebrate Zoology, (Second Edition), Holt-Saunders International Edition, pp-1024.
- 2. Barnes, R. S. K., P. Calow, P. J. W. Olive, D. W. Golding, J. J. Spicer. 2013. The Invertebrates: A Synthesis. Third Edition. John Wiles & Sons Inc., Hoboken. New Jersey, New Delhi.
- 3. Dechenik, J. A. 2015. Biology of Invertebrates (Seventh Edition). Published by McGraw Hill Education (India) Private Limited, pp-624.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	S	M	S	S	S
CO2	S	S	M	M	S	S	M	M	S	S
CO3	S	M	S	M	S	S	M	M	S	S
CO4	S	M	S	M	S	S	M	M	S	M
CO5	S	M	S	M	S	S	M	M	S	M

^{*}S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	14	15	15
Weightage % of course contribution to POs	3.0	2.8	2.8	3	3

PROGRAMME CODE		PGZOOA	PROGRAMME	M.Sc., ZOOLOGY				
COURSE CO	DE		BATCH	2023-2025				
HOURS		7	SEMESTER	I				
CREDITS		5	COURSE TITLE	CORE II: Comparative And Vertebrates	atomy of			
Learning O	Learning Objectives:							
The main ob	ojectives o	of this course	e are:					
LO1	Exen	nplifying th	e vertebrate ori	gin and the intermediary	position of			
	Procl	hordates bety	ween invertebrates	and vertebrates.				
LO2	Acqu	ires the kno	wledge on evoluti	on and adaptive radiation of	f Agnatha and			
	Pisce	es.						
LO3	Unde	erstanding kr	owledge about the	first terrestrial vertebrates ar	nd the adaptive			
	radia	tion of land	animals		-			
LO4	Impa	rting conce	otual knowledge a	about the animal life in the	air and their			
	beha	viours.						
LO5	Unde	erstanding th	e origin and efficie	ency of mammals and evoluti	onary changes			
	that o	occurred in the	he life of vertebrate	es.				
Expected C	ourse O	utcome:						
On the succe	essful cor	mpletion of t	he course, student	will be able to:				
CO1					K1 & K2			
CO2		Understand the evolutionary process. All are linked in a sequence of life patterns.						
CO3	conserva	Apply this for pre-professional work in agriculture and K3 & K5 conservation of life forms.						
CO4	Analyze	Analyze what lies beyond our present knowledge of life process. K4 & K6						
CO5	classific	eation.		hylogenetic relationship in	K5 & K6			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

	Units						
I	Origin of vertebrates: Concept of Protochordata; The nature of vertebrate morphology; Definition, scope and relation to other disciplines; Importance of the study of vertebrate morphology.						
II	Origin and classification of vertebrates; Vertebrate integument and its derivatives. Development, general structure and functions of skin and its derivatives; Glands, scales, horns, claws, nails, hoofs, feathers and hairs.						
III	General plan of circulation in various groups; Blood; Evolution of heart; Evolution of aortic arches and portal systems. Respiratory system: Characters of respiratory tissue; Internal and external respiration; Comparative account of respiratory organs						

	Skeletal system: Form, function, body size and skeletal elements of the body;
IV	Comparative account of jaw suspensorium, Vertebral column; Limbs and girdles;
	Evolution of Urinogenital system in vertebrate series.
V	Sense organs: Simple receptors; Organs of Olfaction and taste; Lateral line system;
	Electroreception. Nervous system: Comparative anatomy of the brain in relation to
	its functions; Comparative anatomy of spinal cord; Nerves-Cranial, Peripheral and
	Autonomous nervous systems.

- 1. Swayam Prabha https://www.swayamprabha.gov.in/index.php/program/archive/9
- 2. Yong, J. Z. 1981. The life of Vertebrates, English language Book society, London, pp-645.
- 3. Romer, A.S. 1971. The Vertebrate body, W.B.S. Saunders, Philadelphia, pp-600.

Recommended texts

- 1. Waterman, A.J. 1972. Chordate Structure and Function, MacMillan Co., New York, pp.587.
- 2. Parker T. J. and W. A. Haswell. 1962. A text book of Zoology, Vol. 2, Vertebrates, 7th Edition, Mac Millan Press, London, pp-750.
- 3. Ekambaranatha Ayyar and T. N. Ananthakrishnan. 2009. Manual of Zoology, Vol II, S. Viswanathan Pvt. Ltd. Chennai.
- 4. Kotpal, 2019. R.L. Modern Text Book of Zoology Vertebrates, 4th Edition, Rastogi Publications, Meerut, pp-968.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	S	M	S	S	S	M	S
CO2	M	S	S	M	M	M	M	M	S	M
CO3	S	M	M	S	M	M	S	L	M	M
CO4	M	L	S	M	S	S	M	M	S	L
CO5	S	M	L	S	S	M	S	S	M	M

^{*}S - Strong; M - Medium; L - Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	15	15	14	14
Weightage % of course contribution to	2.8	3	3.0	2.8	2.8
POs					

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	I
CREDITS	4	COURSE	CORE III: Lab Course in Invertebrates &
		TITLE	Vertebrates

Learning O	Learning Objectives:				
The main ob	jectives of this course are:				
LO1	Understanding the different systems in invertebrates & vertebrates	ates.			
LO2	Learning about various animal species, their phylogenetic aff	inities and their			
	adaptive features				
LO3	Imparting conceptual knowledge about the salient features anatomy.	and functional			
LO4	Developing the skill in mounting techniques of the biological s	amples.			
LO5	LO5 Gaining fundamental knowledge on the skeletal system				
Expected C	ourse Outcome:				
On the succe	essful completion of the course, student will be able to:				
CO1	Understand the structure and functions of various systems in	K2 & K4			
	animals				
CO2	Learn the adaptive features of different groups of animals	K1 & K2			
CO3	Learn the mounting techniques K2 & K3				
CO4	Acquire strong knowledge on the animal skeletal system	K2 & K4			

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

INVERTEBRATES

Dissection

Earthworm : Nervous system

Pila : Digestive and nervous systems

Cockroach : Nervous system and Digestive system

Prawn : Appendages

Study of the following slides with special reference to their salient features and their modes of life

- 1. Amoeba
- 2. Entamoeba histolytica
- 3. Paramecium
- 4. Hydra with bud
- 5. Sporocyst Liver fluke
- 6. Cercaria larva
- 7. Tape worm (Scolex)
- 8. Ascaris T. S.
- 9. Mysis of prawn

Spotters

- 1. Scorpion
- 2. Penaeus indicus
- 3. Emerita (Hippa)
- 4. Perna viridis

Mounting

Earthworm : Body setae

Pila : Radula

Cockroach : Mouth parts

Grasshopper : Mouth parts

CHORDATES

Study the nervous system of Indian dog shark - Dissection

- 1. Nervous system of *Scoliodon sorrakowah* 5th or Trigeminal nerve
- 2. Nervous system of *Scoliodon sorrakowah* -7^{th} or Facial nerve
- 3. Nervous system of *Scoliodon sorrakowah* 9th and 10th or Glossopharyngeal &

Vagus nerve

Study of the following specimens with special reference to their salient features and their modes of life

- 1. *Amphioxus* sp. (Lancelet)
- 2. Ascidia sp. (sea squirt)
- 3. Scoliodon l sorrakowah (Indian dog shark)
- 4. *Trygon*sp. (Sting ray)
- 5. *Torpedo* sp. (Electric ray)
- 6. *Arius maculatus* (Cat fish)
- 7. *Belone cancila* (Flute fish)
- 8. *Exocoetuspoecilopterus* (Flying fish)
- 9. *Mugil cephalus* (Mullet)
- 10. *Tilapia mossambicus* (Tilapia)
- 11. Rachycentron canadum (Cobia)
- 12. Tetrodon punctatus (Puffer fish)
- 13. *Dendrophis*sp. (Tree snake)

Study of the different types of scales in fishes

- 1. Cycloid scale
- 2. Ctenoid scale
- 3. Placoid scale

Study of the frog skeleton system (Representative samples)

Entire skeleton

- 1. Skull
- 2. Hyoid apparatus
- 3. Pectoral girdle and sternum
- 4. Pelvic girdle
- 5. Fore limb
- 6. Hind limb

Mounting

1. Weberian ossicles of fish

Text Books:

- 1. Lal, S.S. 2009. Practical Zoology, Rastogi Publications, pp-484.
- 2. Iuliis G. D. and D. Pulerà, 2007. The Dissection of Vertebrates: A Laboratory Manual. Academic Press, Imprint of Elsevier Publication, pp-416.
- 3. Verma, P.S. 2000. Manual of Practical Zoology: Chordates, S. Chand Publishing Company, pp-528

Reference Books:

- 1. Preeti, G., and C. Mridula, 2000. Modern Experimental Zoology, Indus International Publication.
- 2. Sinha, J., A. K. Chatterjeee, P. Chattopadhya. 2011. Advanced Practical Zoology, Arunabha Sen Publishers, pp-1070.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	M	S	S	M	S	M	S
CO2	S	M	L	S	M	M	S	M	S	M
CO3	M	M	S	S	L	S	M	S	S	M
CO4	S	S	M	S	M	S	M	L	M	S

*S - Strong; M - Medium; L - Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	3	2	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	12	11	12	11	12
Weightage % of course contribution to POs	3.0	2.75	3.0	2.75	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	5	SEMESTER	I
CREDITS	3	COURSE TITLE	ELECTIVE I: Molecules and their interaction relevant to Biology

Learning Ob	jectives:	
The main obj	ectives of this course are:	
LO1	Students should know the fundamentals of biochemistry	
LO2	Be able to demonstrate accurate quantitative analysis and computer liter	racy
LO3	Be able to understand and effectively apply scientific ethics	
Expected Co	urse Outcome:	
	On the successful completion of the course, student will be able to:	
CO1	Learn the structure, properties, metabolism and bioenergetics of biomolecules	K1 & K3
CO2	Acquire knowledge on various classes and major types of enzymes, classification, their mechanism of action and regulation	K1 & K2
CO3	Understand the fundamentals of biophysical chemistry and biochemistry, importance and applications of methods in conforming the structure of biopolymers	K2 & K3
CO4	Comprehend the structural organization of and proteins, carbohydrates, nucleic acids and lipids	K2 & K4
CO5	Familiarize the use of methods for the identification, characterization and conformation of biopolymer structures	K5 & K6

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6– Create

	Units
I	Basics of biophysical chemistry and biochemistry: Structure of atoms, molecules and chemical bonds - Principles of biophysical chemistry (pH, buffer, reaction kinetics).
II	Biomolecular interactions and their properties: Stabilizing interactions (Vander Waals, electrostatic, hydrogen bonding, hydrophobic interaction etc Composition, structure, metabolism and function of biomolecules carbohydrates- Kreb's cycle, Lipids- β oxidation, ketogenesis, proteins- deamination, transamination, transmethylation.
III	Bioenergetics and enzymology: Bioenergetics, glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers - Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isoenzymes

IV	Structural conformation of proteins and nucleic acids: Conformation of proteins (Ramachandran plot, secondary, tertiary and quaternary structure; domains; motifs and folds) - Conformation of nucleic acids (A-, B-, Z-DNA), t-RNA, micro-RNA).
V	Stabilizing interactions in biomolecules: Stability of protein and nucleic acid structures - hydrogen bonding, covalent bonding, hydrophobic interactions and disulfide linkage.

- 1. Berg, J. M., J. L. Tymoczko and L. Stryer 2002. Biochemistry. 5th Ed., W.H. Freeman & Co., New York, pp-1050.
- 2. Kuchel P.W. and G. B. Ralston. 2008. Biochemistry. McGraw Hill (India) Private Limited, UP, pp-580.
- 3. McKee T. and J. R. McKee. 2012. Biochemistry: The Molecular Basis of Life. (7th Edition). Oxford University Press, US, pp-793.
- 4. Nelson D.L. and M.M. Cox. 2012. Lehninger's Principles of Biochemistry. (6th Edition). W. H. Freeman Publishers, New York, pp-1158.
- 5. Satyanarayana U. and U. Chakrapani, 2006. Biochemistry. (3rd Edition). Books and Allied (P) Ltd. Calcutta, pp-695.

Recommended texts

- 1. Buchanan, B.B., W. Gruissem and R.L. Jones. 2015. Biochemistry and Molecular Biology of Plants. John Wiley and Sons Ltd., UK, pp-1280.
- 2. Murray, R.K., D.K. Granner, P.A. Mayes and V.W. Rodwell. 2003. Harper's Illustrated Biochemistry (26th Edition), The McGraw-Hill Companies, Inc., USA, pp-704.
- 3. Palmer, T. 2004. Enzymes. Affiliated East-West Press Pvt. Ltd., New Delhi, pp-416.
- 4. Voet D. and J.G. Voet. 2011. Biochemistry. (4th Edition). John Wiley & Sons (Asia) Pvt. Ltd., pp-1428.

			Mappin	g with Prog	gramme (Outcome	s*			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	S	M	S	M	M
CO2	S	S	S	S	S	S	M	M	M	S
CO3	S	M	M	S	M	S	S	S	S	S
CO4	S	M	S	M	S	M	S	S	S	M
CO5	M	S	S	M	M	S	M	S	S	M

*S - Strong; M - Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	14	15	15
Weightage % of course contribution to POs	3	3.0	2.8	3.0	3

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	5	SEMESTER	I
CREDITS	3	COURSE TITLE	ELECTIVE I: Animal Behaviour

Learning Objectives:

The main objectives of this course are:

LO1 To produce animals with high yielding quality.

LO2 To produce animals with high feed conversion rate.

LO3 To produce animals that are resistant to disease and parasites.

Expected Course Outcome:

Upon completion of this course, Students would have

1		
CO1	Recall and record genetic basis and evolutionary history of behaviour.	K1 & K2
CO2	Analyse and identify innate, learned and cognitive behaviour and differentiate between various mating systems.	K3 & K4
CO3	Classify movement and migration behaviours and explain environmental influence upon behaviour.	K1, K4 & K5

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Genetic material, Genes and chromosomes, Genetic variation, Single and Polygenic
I	inheritance of behaviour, Heritability of behaviour, Natural selection and behaviour,
	Frequency distribution of phenotypes, Darwinian fitness, Evolution of adaptive strategies.
	Sexual selection, Altruism, Sexual strategy and social organisation, Animal perception,
II	Neural control of behaviour, Sensory processes and perception, Visual adaptations to
	unfavourable environments.
	Coordination and Orientation, Homeostasis and Behaviour, Physiology and Behaviour in
III	changing environments, Animal Learning, Conditioning and Learning, Biological aspects of
	learning, Cognitive aspects of learning.
	Instinct and learning, Displacement activities, Ritualization and Communication, Decision
	making behaviour in Animals, Complex behaviour of honeybees, Evolutionary optimality,
IV	Mechanism of Decision making. The mentality of Animals: Languages and mental
	representation, non-verbal communication in human, mental images, Intelligence, tool use
	and culture, Animal awareness and Emotion.
\mathbf{v}	Organization of circadian system in multicellular animals; Concept of central and peripheral
•	clock system; Circadian pacemaker system in invertebrates with particular reference to

Drosophila; Photoreception and photo- transduction; Molecular bases of seasonality; The relevance of biological clocks for human welfare - Clock function (dysfunction); Human health and diseases - Chrono pharmacology, Chrono medicine, Chronotherapy.

Reading list

- 1. David McFarland, 1985. Animal Behaviour, Longman Scientific & Technical, UK. 576pp.
- 2. HarjindraSingh, 1990. A TextBook of Animal Behaviour, AnomolPublication, 293pp.
- 3. Hoshang S.Gundevia and Hare Goving Singh, 1996. Animal Behaviour, S.Chand&Co, 280pp.
- 4. Shukla, J. P 2010, Fundamentals of Animal Behaviour, Atlantic, 587pp.
- 5. Vinod Kumar, 2002. Biological Rhythms. Narosa Publishing House, Delhi.

Recommended texts

- 1. Michael D. Breed and Janice Moore, 2012. Animal Behaviour, Academic Press, USA, 359pp.
- 2. Aubrey Manning and Martin Stamp Dawkins, 2012. An Introduction to Animal Behaviour, 6th Edition, Cambridge University Press, UK. 458pp.
- 3. Davis E.Davis, 1970. Integral Animal Behaviour, Mac Millan Company, London, 118pp.
- 4. Jay, C. Dunlap, Jennifer, J. Loros, Patricia J. De Coursey (ed). 2004. Chronobiology Biological time Keeping, Sinauer Associates Inc, Publishers, Sunderland, MA.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	L	L	M	M	L	L
CO2	S	M	L	L	S	L	M	M	L	M
CO3	M	L	M	L	S	S	M	S	M	S

^{*}S - Strong; M - Medium; L- Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	3	2
CO3	3	3	3	3	3
Weightage	8	9	8	9	8
Weightage % of course contribution to POs	2.7	3.0	2.7	3.0	2.7

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	5	SEMESTER	I
CREDITS	3	COURSE TITLE	ELECTIVE II: Biostatistics

Learning Ob	jectives:				
The main obje	ectives of this course are:				
LO1	Students should know basic concepts in Biostatistics.				
LO2	Students will conduct basic Statistical analysis of data				
LO3	The students will think critically. Reason analytically and so	lve problems.			
Expected Co	urse Outcome:				
Upon complet	tion of this course, Students would have				
CO1	Clear understanding of design and application of biostatistics relevant to experimental and population studies. K2 & K3				
CO2	CO2 Acquired skills to perform various statistical analyses using modern statistical techniques and software. K3 & K4				
CO3	Knowledge on the merits and limitation of practical problems in biological/ health management study as well as to propose and implement appropriate statistical design/ methods of analysis.	K5 & K6			

 $\pmb{K1}\text{-} \ Remember; \ \pmb{K2}\text{-} \ Understand; \ \pmb{K3}\text{-} \ Apply; \ \pmb{K4}\text{-} Analyze; \ \pmb{K5}\text{-} Evaluate; \ \pmb{K6}\text{-} \ Create$

	Units
I	Definition, scope and application of statistics; Primary and secondary data: Classification and tabulation of biological data: Types and applications. Variables: Graphic methods: Frequency polygon and ogive curve; Diagrammatic representation: Histogram, bar diagram, pictogram and pie chart.
II	Measures of central tendency: Mean, median and mode for continuous and discontinuous variables. Measures of dispersion: Range, variation, standard deviation, standard error and coefficient of variation.
III	Probability: Theories and rules; Probability - Addition and multiplication theorem; Probability distribution: Properties and application of Normal, Binomial and Poisson distributions.
IV	Hypothesis testing: Student 't' test - paired sample and mean difference 't' tests. Chi square test & their properties and uses. Correlation: Types - Karl Pearsons Coefficient, Significance test for correlation coefficients.

 \mathbf{V}

Regression analysis: Methods, Estimation of unknown value from known value, graphical representation. Analysis of variance: one way ANOVA.

Reading list

- 1. Arora, P. N. and P. K. Malhan. 1996. Biostatistics, Himalaya Publishing House, Mumbai, pp-447.
- 2. Gurumani, N. 2005. Introduction to Biostatistics, M.J.P. Publishers, Delhi, pp-407.
- 3. Das, D. and A. Das. 2004. Academic Statistics in Biology and Psychology, Academic Publisher, Kolkata, pp-363.
- 4. Palanichamy, S. and Manoharan, M. 1990. Statistical Methods for Biologists, Palani Paramount Publications, Tamil Nadu, pp-264.

Recommended texts

- 1. Bailey, N. T. J. 1959. Statistical in Biology, English Universities Press, London, pp-48.
- 2. Sokal, R. R. and F. J. Rohlf, 1973. Introduction to Biostatistics, W.H. Freeman, London, pp-467.
- 3. Sokal, R.R. and F.J. Rohlf. 1981. Biometry: The principles and practice of statistics in biological research, San Francisco: W.H. Freeman, London, pp-859.
- 4. Zar, J.H. 1998. Biostatistical Analysis, Pearson Education (Singapore) Pvt. Ltd., Delhi, India, pp-660.
- 5. Bailey, N. T. J. 1994. Statistical Methods in Biology (Third Edition), Cambridge University Press, Cambridge, pp-255.
- 6. Wayne W. Daniel. Biostatistics: A Foundation for Analysis in the Health Sciences, John Wiley & Sons Inc, USA, pp-443.
- 7. Snedecor, G. W. and W. G. Cochran. 1967. Statistical Methods (Sixth Edition), Oxford & IBH Publishing Co., New Delhi, pp-593.
- 8. Pagano, M. and K. Gauvreau. 2008. Principles of Biostatistics (Second Edition), Cengage Learning, New Delhi, pp-525.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	M	M	M	S	S	M	S	M	M	
CO2	S	S	S	M	S	S	S	M	S	S	
CO3	M	S	S	S	M	S	S	S	S	L	

^{*}S - Strong; M - Medium; L- Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
Weightage	9	9	9	9	9
Weightage % of course contribution to POs	3.0	3.0	3.0	3.0	3.0

PROGRAM	ME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOG	GY
COURSE C	ODE		BATCH	2023-2025	
HOURS		5	SEMESTER	I	
CREDITS		3	COURSE TITLE	ELECTIVE II:	Bio-composting
Learning Ob	jectives:				
The main obj	ectives of the	is course are:			
LO1	To hi	ighlight the ir	nportance of bio compo	sting in waste mar	nagement.
LO2 To enable students for setting up bio compost units and bins for waste reduc					or waste reduction.
Expected Co	urse Outco	me:			
Upon comple	tion of this c	course, Studer	nts would have		
CO1	Gained kno	owledge on th	ne process of bio compo	osting	K1, K2 & K3
CO2	The ability	to demonstra	te bio composting tech	niques for various	
002	end applic	ations like so	olid waste management	, industrial waste	K3, K4 & K6
	recycling u				
CO3	CO3 Knowledge, gain on the economic cost of establishing small bio			K3, K5 & K6	
	compost ur	nits in the cott	age industry.		110, 110 W 110

compost units in the cottage industry. **K1-** Remember; **K2-** Understand; **K3-** Apply; **K4-**Analyze; **K5-**Evaluate; **K6-** Create

	Units
I	Biocomposting - Definition, types and ecological importance.
II	Types of biocomposting technology - Field pits/ground heaps/ tank/large-scale/batch and continuous methods.
III	Preparation of biocompost pit and bed using different amendments.
IV	Applications of biocompost in soil fertility maintenance, promotion of plant growth, value added products, waste reduction, etc.
V	Establishments of small biocompost unit - project report proposal for Self Help Group (Income and employment generation).
- ·	

- 1. Bikas R. Pati& Santi M. Mandal (2016). Recent trends in composting technology.
- 2. Van der Wurff, A.W.G., Fuchs, J.G., Raviv, M., Termorshuizen, A.J. (Editors). 2016. Handbook for Composting and Compost Use in Organic Horticulture.
- 3. BioGreenhouse COST Action FA 1105,

Recommended websites

www.biogreenhouse.org

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	M	S	M	L	L	M	L	M	
CO2	S	M	M	M	M	M	L	L	M	M	
CO3	S	S	S	S	S	S	L	M	M	S	

*S - Strong; M - Medium; L- Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	2
CO3	3	3	3	3	3
Weightage	9	9	8	9	8
Weightage % of course contribution to POs	3.0	3.0	2.7	3	2.7

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	II
CREDITS	5	COURSE TITLE	CORE IV: Cellular and Molecular Biology

Learning Obje	ctives:	
The main object	tives of this course are:	
LO1	Students will understand how these cellular components are	used to generate
	and utilize energy in cells.	
LO2	Students will understand the cellular components underly	ing mitotic cell
Ermosted Cour	division.	
Expected Cour		
Upon completion	on of this course, students could	
CO1	Understand the general concepts of cell and molecular	K2
	biology.	
CO2	Visualize the basic molecular processes in prokaryotic and	
	eukaryotic cells, especially relevance of molecular and	K1 & K2
	cellular structures influencing functional features.	
CO3	Perceive the importance of physical and chemical signals at	
	the molecular level resulting in modulation of response of	K3 & K4
	cellular responses.	
CO4	Updated the knowledge on the rapid advances in cell and	
	molecular biology for a better understanding of onset of	K5
	various diseases including cancer.	
CO5	Understand the general concepts of cell and molecular	K2
	biology.	

 $\pmb{K1}\text{-} \ Remember; \ \pmb{K2}\text{-} \ Understand; \ \pmb{K3}\text{-} \ Apply; \ \pmb{K4}\text{-} Analyze; \ \pmb{K5}\text{-} Evaluate; \ \pmb{K6}\text{-} \ Create$

	Units
	General features of the cell: Basic structure of prokaryotic and eukaryotic cells -
I	Protoplasm and deutroplasm - cell organelles; cell theory; Diversity of cell size
	and shapes.
	Cellular organization: Membrane structure and functions - Structure of model
	membrane, lipid bilayer and membrane proteins diffusion, osmosis, ion channels,
II	active transport, ion pumps, mechanism and regulation of intracellular transport,
11	electrical properties of membranes. Structure and functions of Intracellular
	organelles: Nucleus, mitochondria, Golgi bodies, lysosomes, endoplasmic
	reticulum, peroxisomes, plastids, vacuoles and chloroplasts.

III	Cell division and Cell cycle: Mitosis and Meiosis, their regulation, steps in cell cycle and control of cell cycle. Molecular biology of cell: Structure of DNA and RNA; Process of DNA replication, transcription and translation in pro- and eukaryotic cells; Genetic maps.
IV	Cell communication and cell signaling: Membrane- associated receptors for peptide and steroid hormones - signaling through G-protein coupled receptors, signal transduction pathways. General principles of cell communication: extracellular space and matrix, interaction of cells with other cells and non-cellular structures.
v	Cancer cells: Characteristic features of normal and cancer cells; Carcinogens: types and cancer induction; Metastasis; Oncogenes and tumor suppressor genes, apoptosis; therapeutic interventions of uncontrolled cell growth.

- 1. Plopper, G., D. Sharp, and E. Sikorski. 2015. Lewin's Cells (Third Edition), Jones & Bartlett, New Delhi, pp-1056
- 2. Plopper, G. 2013. Principles of Cell Biology, Jones & Bartlett, Maryland, pp-510

Recommended texts

- 1. Karp, G. 2010. Cell Biology (Sixth Edition), John Wiley & Sons, Singapore, pp-765.
- 2. Lodish, H., C. A. Kaiser, A. Bretscher, *et al.*, 2013. Molecular Cell Biology (Seventh Edition), Macmillan, England, pp-1154
- 3. De Robertis, E.D.P. and E. M. F. De Robertis Jr, 1987. Cell and Molecular Biology. Info-Med, Hong Kong, pp-734
- 4. Abbas, A. K., A. H. Lichtman and S. Pillai, 2007, Cell and Molecular Immunology (Sixth Edition), Saunders, Philadelphia, pp-566
- 5. Loewy, A.G., P. Siekevitz and J. R. Menninger, *et al.*, 1991, Cell Structure and Function (Third Edition), Saunders, Philadelphia, pp-947
- 6. Watson, J. D., N.H. Hopkins, J.W. Roberts, *et al.*, 1987, Molecular Biology of the Gene (Fourth Edition), Benjamin/Cummings, California, pp-1163
- 7. Han, S. S. and J. Holmstedt. 1979, Cell Biology, McGraw Hill, pp-319
- 8. Alberts, B., A. Johnson, J. Lewis, *et al.*, 2015, Molecular Biology of the Cell (Sixth Edition), Garland Science, New York, pp-1342
- 9. Clark, D.P., 2005. Molecular Biology, Elsevier, China, pp-784
- 10. Tropp, B. 2008. Molecular Biology Genes to Proteins (Third Edition), Jones & Bartlett, US, pp-1000

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	L	S	L	M	S	S	S	M	M	M	
CO2	M	M	M	S	S	S	S	M	S	M	
CO3	S	S	S	M	M	S	M	M	L	S	
CO4	M	M	S	L	S	S	L	M	S	S	
CO5	S	M	M	S	S	S	S	M	S	S	

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	14	15	15
Weightage % of course contribution to POs	3.0	3.0	2.8	3.0	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	II
CREDITS	5	COURSE TITLE	CORE V: Developmental Biology

Learning Objectives:							
The main	n objec	tives of this course are:					
LO1 Understand the process of gametogenesis, cleavage and gastrulation embryonic development, extra embryonic membrane and placenta in various animals and human.							
L	.O2	Learn the principles, methods and applications of cryo-preserva and embryo.	tion of gametes				
Expected	d Cour	rse Outcome:					
On the su	uccessf	ful completion of the course, student will be able to					
CO1	De	efine the concepts of embryonic development	K1				
CO2	Ot	Observe various stages of cell divisions under microscope K2 & K3					
CO3	Ur	Understand the formation of zygote K4					
CO4	Di	Differentiate the blastula and gastrula stages K4 & K5					
CO5		Learn the distinguishing features of three different germ layers and formation of various tissues and organs					

 $\pmb{K1}\text{-} \ Remember; \ \pmb{K2}\text{-} \ Understand; \ \pmb{K3}\text{-} \ Apply; \ \pmb{K4}\text{-} Analyze; \ \pmb{K5}\text{-} Evaluate; \ \pmb{K6}\text{-} \ Create$

	Units
	Pattern of animal development: Chief events in animal development; History of
	thoughts and conceptual developments. Gametogenesis: Origin of germ cells,
I	spermatogenesis - Sperm morphology in relation to the type of fertilization,
	Oogenesis - Oogenesis in insects and amphibians; Composition and synthesis of
	yolk in invertebrates (insects and crustaceans)
	Fertilization:Sperm aggregation, Sperm activation, Chemotaxis, Sperm
	maturation and capacitaion in mammals, Acrosome reaction. Sperm - egg
II	interaction. Sperm entry into the egg - Egg activation - Intracellular calcium
	release - Cortical reaction - Physiological polyspermy - Fusion of male and female
	pronuclei - Post fertilization metabolic activation - Parthenogenesis
	Cleavage and gastrulation:Pattern of embryonic cleavage, mechanisms of
	cleavage, mid blastula transition - Determinate and regulatory embryos, Factors
III	affecting gastrulation, mechanisms and types of gastrulation in respective animal
111	embryos (Sea urchin, Amphioxus, Amphibians, Aves, Mammals); Fate maps -
	(Amphibian and Chick), Epigenesis and preformation – Formation of primary
	germ layers.

IV	Embryonic Development; Embryonic development of fish and birds, formation of extra embryonic membranes in mammalian — Organogenesis - Development of endodermal, mesodermal and ectodermal derivatives. Embryonic Induction and neurulation; Formation and migration of neural crest cells - types of neural crest cells and their patterning - primary and secondary neurulation.
V	Post embryonic development metamorphosis: Endocrine control of metamorphosis in insect and amphibian - Endocrine control of moulting and growth in crustaceans and insects - Neoteny and pedogenesis. Regeneration: Formation of ectodermal cap and regeneration blastema – Types of regeneration in planaria, Regenerative ability in different animal groups, Factors stimulating regeneration – Biochemical changes associated with regeneration. Aging and senescences: Biology of senescences- cause of aging- mechanism involved in apoptosis. Experimental Embryology: Mammalian reproduction: Mammalian reproductive cycle, Hormonal regulation, Endocrine changes associated with normal pregnancy, Induced ovulation in humans – Cryopreservation of gametes/embryos - Ethical issues in cryopreservation.

- 1. Balinsky, B. I. 1981. Introduction to Embryology (5th Edition), CBS College Publishers, New York, pp-782.
- 2. Gilbert. S. F. 2006. Developmental Biology, 8th Edition, INC Publishers, USA, pp-785.
- 3. Berrill, N.J. 1974. Developmental Biology, Tata Mc-Graw Hill Publications, New Delhi, pp-535.
- 4. Tyler, M.S. 2000. Developmental Biology A Guide for Experimental Study, Sunderland, MA, pp-208.
- 5. Subramoniam, T. 2011. Molecular Developmental Biology (2nd Edition), Narosa Publishers, India, pp-364.
- 6. www.easybiologyclass.com > developmental-biology-e
- 7. www.studocu.com > document > lecture-notes > view
- 8. ocw.mit.edu > courses > 7-22-developmental-biology-f.

Recommended texts

- 1. Wilt, F.H. and N.K. Wessel. 1967. Methods in Developmental Biology, Thomas Y Crowell, New York.
- 2. Slack J.M.W. 2012. Essential Developmental Biology (3rd Edition), Wily-Blackwell Publications, USA, pp-496.
- 3. Mari-Beffa, M. and J. Knight. 2005. Key Experiments in Practical Developmental Biology, Cambridge University Press, UK, pp-404.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	S	S	L	S	M	L	M
CO2	S	S	S	S	S	L	S	S	S	S
CO3	S	M	S	S	S	S	S	M	L	M
CO4	S	S	S	S	S	M	S	S	S	L
CO5	S	S	S	M	S	S	S	M	L	M

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	2	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	14	14	15	15
Weightage % of course contribution to POs	2.8	2.8	2.8	3.0	3.0

PROGRA	MME (CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY		
COURSE	CODE			BATCH	2023-2025		
HOURS			6	SEMESTER	II		
CREDITS			4	COURSE TITLE	CORE VI: Lab Course in and Developmental Biol	Cell Biology ogy	
Learning	Learning Objectives:						
The main	objec	tives of	f this course a	are:			
L	01	Practio	cal course ai	ims at demonstrat	ing significant cellular an	d molecular	
		biolog	ical principle	es, quantitative and	d analytical approaches tha	at enable the	
		studen	its to trans	late the theoretic	cal foundation in cell b	oiology and	
		develo	pmental biol	ogy into practical u	ınderstanding.		
Expected	l Cour	se Out	tcome:				
Upon cor	npletic	on of th	is lab course,	, students			
CO1	Acqu	ire kr	owledge to	differentiate the	cells of various living		
	organ	nisms a	and become a	wareness of physic	ological processes of cells	K2	
	e.g.,	cell o	divisions, va	rious stages of	fertilization and embryo	K2	
	devel	lopmen	ıt.				
CO2	Unde	erstand	and observe	as well as correc	tly identify different cell	К3	
	types, cellular structures using different microscopic techniques.				N.S		
CO3	Deve	lop ha	ndling - skills	s through the wet-la	nb course.	K6	
CO4	Learn	n the m	ethod of cultu	uring of <i>Drosophila</i>	and identification of their	K1 & K2	
	wild and mutant strains					MI & KZ	
CO5	Acquire skills to perform human karyotyping and chromosome					K1 & K2	
	mapp	oing to	identify abno	ormalities		MI W M2	

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

CELL AND MOLECULAR BIOLOGY

- 1. Determination of cell size using micrometer
- 2. Mitosis in root meristematic cells of plants
- 3. Identification of various stages of meiosis in Tradescantia.
- 4. Detection of polytene chromosome in salivary gland cells of the larvae of the Chironomus
- 5. Detection of sex chromatin
- 6. Identification of blood cells in the haemolymph of the of the cockroach
- 7. Isolation of genomic DNA from eukaryotic tissue
- 8. Isolation of total RNA from bacterial cells/tissues
- 9. Agarose gel electrophoresis of DNA
- 10. SDS-Polyacrylamide gel electrophoresis

DEVELOPMENTAL BIOLOGY

Gametogenesis - Observation of gametes from gonadal tissue sections

- i. Oogenesis:Section through ovary of shrimp, fish, frog and mammals
- ii Spermatogenesis:Section through testis of shrimp, fish, calotes and mammals

Fertilization

Induced spawning in polycheate worm Hydroids elegans

In vitro fertilization and development in a polycheate worm Hydroids elegans

Observation of egg developmental stages in *Emerita emeritus*

Embryogenesis

Observation and whole mount preparation of the chick blastoderm - 18 hours of development

Chick embryonic stage - 24 hours of development

Chick embryonic stage - 48 hours of development

Chick embryonic stage - 72 hours of development

Chick embryonic stage - 96 hours of development

Histological observation: Section through various developmental stages in chick embryo

Experimental Embryology

Regeneration in Frog Tadpoles

Blastema formation

Demonstration of regenerative process in tadpole

Metamorphosis: Demonstration of metamorphosis in Frog Tadpole using exogenous Iodine

Cryopreservation: Demonstration of cryopreservation of gametes of fin fish/shell fish

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	S	L	L	M
CO2	S	S	S	S	S	M	M	M	M	M
CO3	S	S	M	S	S	L	S	M	L	M
CO4	M	M	L	M	L	M	M	S	M	L
CO5	S	S	M	L	S	M	L	S	S	S

^{*}S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	14	15	15
Weightage % of course contribution to POs	3.0	2.8	2.8	3	3

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		ВАТСН	2023-2025
HOURS	4	SEMESTER	II
CREDITS	3	COURSE TITLE	ELECTIVE III: Apiculture

Learnii	Learning Objectives:					
The ma	in object	ives of this course are:				
	LO1 Students should know basic concepts in Apiculture.					
Expecte	ed Cours	se Outcome:				
Upon co	ompletio	n of this course, Students would have				
CO1	Clear	understanding of morphology, life cycle, characteristics of	K1, K2 &			
	honeyb	ees and bee keeping.	К3			
CO2	Acquired skills to perform bee keeping from managing colonies of bees in order to harvest honey and other Bee related by-products in different setups and as an Entrepreneurial venture.					
CO3		edge on the harvesting, preserving and processing of bee ts and identification of the appropriate markets to sell the e.	K5 & K6			

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
I	Introduction to Apiculture. History, classification, types, life Cycle of different species of
1	Honeybees and their behavioural patterns. Social organization of bee colony
	Bee-keeping system, tools and equipment's needed for bee keeping. Types of beehives,
II	structure and functional features. Criteria for site selection for apiculture and factors
	affecting them.
	Identification and characteristics and Preventive measures to be taken against of different
III	bee enemies. Diseases affecting honeybees and their control measures. Colony collapse
	disorder and its management.
IV	Bee products, uses and importance- Honey, Royal jelly, Propolis, Pollen and Bee
1 1	venom. Harvesting, Processing, Packaging and Marketing of bee products.
\mathbf{v}	Apiculture industry around the world and Role of Central Bee Research & Training
•	institute in India. Apiculture as an Entrepreneurial venture.
Doodi	na liat

- 1. Singh, D., Singh, D. Pratap. 2006. A Handbook of Beekeeping. AGROBIOS (INDIA)
- 2. Sharma P.L. and Singh, S.H. Book of Bee keeping.
- 3. Cherian and Ramanathan, S. Bee keeping in south India.
- 4. Prospective in Indian Apiculture R.C. Mishra.

Recommended texts

- 1. Caron, D.W. 2013 (revised from 1999). Honey Bee Biology and Beekeeping. Wicwas Press. Cheshire, CT, 368 pp.
- 2. Kaspar, R., C. Cook, and M. D. Breed. 2018. Animal Behaviour 142: 69-76.
- 3. Hendriksma, H. P., A. L. Toth, and S. Shafir. 2019. Individual and Colony Level Foraging decisions of Bumble Bees and Honey Bees in Relation to Balancing of Nutrient Needs. Frontiers in Ecology and Evolution 7: 177.
- 4. Steinhauer, N. et al. 2018. Drivers of Colony Loss. Current Opinion in Insect Science 26: 142-148.
- 5. Technology and value addition of Honey Dr. D. M. Wakhle and K. D. Kamble.
- 6. ABC & XYZ of Bee culture A. I. Root.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	M	M	S	S	S	S	L	M
CO2	S	S	S	S	S	S	S	L	S	S
CO3	S	M	M	M	S	M	M	M	M	L

^{*}S - Strong; M - Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	2
CO3	3	3	3	3	3
Weightage	9	9	8	9	8
Weightage % of course contribution to POs	3.0	3.0	2.7	3	2.7

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	II
CREDITS	3	COURSE TITLE	ELECTIVE III: Economic Entomology

Learning Objectives:						
The main objectives of this course are:						
L	Students should acquire a fairly good understanding about and their classification.	Students should acquire a fairly good understanding about the life of insects and their classification.				
Expected	d Course Outcome:					
On the successful completion of the course, student will be able to						
CO1	Understand taxonomy, classification and life of insects in the animal kingdom.					
CO2	Know the life cycle, rearing and management of diseases of beneficial insects. K2 & K3					
CO3	Know the type of harmful insects, life cycle, damage potential and management of pests including natural pest control K2 & K3					
CO4	Recognize insects which act as vectors causing diseases in animals and human.					
CO5	Overall understanding on the importance of insects in human life. K2 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units
I	Overview of insects and insect taxonomy: Insects and their biological success - Man and insects; Basic concepts in Insect Taxonomy and classification.
II	Beneficial insects: Silkworms - types, life history, disease management and rearing methods - Types of honeybees, life history, social organization (colonies and caste system), honeybee care and management of bee hive - Lac insects-life history, lac cultivation; Pollinators, predators, parasitoids, scavengers, weed killers, soil-builders.
ш	Destructive insects: Insect pests - definition - Categories of pests - Types of damage to plants by insects -Causes of pest outbreak - Economic threshold level - Biology of the insect pests - Pests of paddy, cotton, sugarcane, vegetables, coconut and stored grains cereals.
IV	Pest management/Control strategies: Methods and principles of pest control - Natural control, Artificial control, Merits and demerits or limitations of these methods in pest control - Development and uses of pest resistant plant varieties - Integrated pest management - Concepts and practice.
V	Vector biology: Vectors of veterinary and public health importance - Mosquitoes as potential vectors of human diseases-control measures

- 1. Ayyar, L.V. R. 1936. Hand book of Economic Entomology for South India. Narendra Publishing House. New Delhi, pp- 528.
- 2. Vasantharaj David, B. and V.V. Ramamurthy. 2016. Elements of Economic Entomology, Eighth Edition, Brillion Publishing, New York, pp-400.
- 3. Ross. H.H. 1965. A Text Book of Entomology, John Wiley & Sons Inc., New York, pp-746.

Recommended texts

- 1. Chapman, R.F., S.J. SimpsonandA.E.Douglas. 2012. The Insects: Structure and Function, Fifth Edition, Cambridge University Press, pp-959.
- 2. Imms, A.D., O.W.Richards and R.G. Davies (Eds.) IMMS' General Textbook of Entomology, Volume I: Structure, Physiology and Development, pp-418; Volume 2: Classification and Biology, pp-934, Springer Netherlands.
- 3. Daly, H.V., J.T. Doyen and P.R. Ehrlich. 1978. Introduction to Insect Biology and Diversity. Mc Graw-Hill Kogakusha Ltd., Tokyo, pp-564.
- 4. Hill, D.S. 1974. Agricultural Insect Pests of the Tropics and Their Control. Cambridge University Press, New York, pp-746.
- 5. Krishnaswami, S. 1973. Sericulture Manual, Vol. I & II, Silkworm rearing, FAO Agricultural Science Bulletin, Rome.
- 6. Mani, M.S. 1982. General Entomology. Oxoford & IBH Publishing Co., pp-912.
- 7. Wigglesworth, V.B. 1972. The Principles of Insect Physiology, ELBS & Chapman and Hall, London, pp-827.

*S - Strong	r: M -	Medium:	L-Low
D Duon,	,, . · ·	micarani,	LUW

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	S	M	M	M	S	L	M	
CO2	S	S	M	S	S	S	S	S	S	L	
CO3	S	M	S	S	S	S	S	S	S	S	
CO4	S	S	S	S	S	S	M	S	M	M	
CO5	S	S	S	M	M	S	M	L	S	M	

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	3	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	15	14	15	14
Weightage % of course contribution to POs	2.8	3.0	2.8	3.0	2.8

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc., ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	II
CREDITS	3	COURSE TITLE	ELECTIVE IV: Research Methodology

Learning Objectives:								
The main	The main objectives of this course are:							
LO1 Students understand the basic principle, methodology and applications of wide used instruments in biological sciences.								
Expected	Course Outcome:							
On the suc	cessful completion of the course, student will be able to							
CO1	Understand the implications of GLP	K1						
CO2	Learn the working principles of different instruments	K2						
CO3	Gain the knowledge on techniques of histology and histochemistry K2 & K4							
CO4	Acquire knowledge on the basic principle and application various modules of light and electron microscopy	n of K3 & K5						

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

	Units						
Ţ	Good laboratory practice (GLP) - pH, Electrodes and pH meter - Colorimeter and						
1	Spectrophotometry.						
II	Histology, Histochemistry, Bioinformatics and Electron microscopy.						
III	Light Microscopy, Bright field, Phase contrast, DIC & Fluorescence microscopy,						
111	wide field and Confocal microscopy.						
IV	Centrifuges, Chromatography, Electrophoresis, ELISA and blotting.						
V	Principles and Applications of tracer techniques in biology, Animal cell culture						
V	techniques.						

Reading list

- 1. Pearse, A.G. 1968. Histochemistry: Theoretical and Applied, Vol. I, Third Edition, J & A Churchill Ltd, pp-758.
- 2. Lillie, R.D. 1954. Histopathologic Technic and Practical Histochemistry, Second Edition, Blakiston, New York, pp-715.
- 3. Hoppert, M. 2003. Microscopic Techniques in Biotechnology, Wiley-VCH GmbH, Weinheim, Germany, pp-330.

Recommended texts

- 1. Chandler, D.E. and Roberson R.W. 2009. Bioimaging: Current Concepts in Light and Electron Microscopy, Jones and Bartlet Publishers, Sudbury, MA, USA, pp440.
- 2. Engelbert, B. 1960. Radioactive Isotopes in Biochemistry, Elsevier Applied Science, pp-376.
- 3. Wolf, G. 1964. Isotopes in Biology, Academic Press, pp-173.
- 4. Srivastava, B. B. 2005. Fundamentals of Nuclear Physics, Rastogi Publications, pp-500.
- 5. Pantin, C. F. A. 1948. Microscopical Techniques, Cambridge University Press, London.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	S	M	S	M	S	M	M	
CO2	S	S	M	S	S	S	M	M	M	S	
CO3	S	M	S	S	S	S	S	S	S	L	
CO4	S	S	S	S	S	M	S	S	S	M	

*S - Strong; M - Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	2	3	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
Weightage	11	12	11	12	11
Weightage % of course contribution to POs	2.8	3.0	2.8	3.0	2.8

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc., ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	II
CREDITS	3	COURSE TITLE	ELECTIVE IV: Ecology

Learning Obje	ctives:						
The main objec	tives of this course are:						
LO1	Knowing the ecology and climatic changes at world level and its resources.	s impact on natural					
LO2	LO2 Understanding the contributing factors for pollution in the environment and the ways in controlling and restoring to natural conditions						
Expected Cour	rse Outcome:						
On the successf	ul completion of the course, student will be able to						
CO1	K2						
	the energy processing						
CO2	Study the various community and population and population control	K2 & K3					
CO3	Understand the fundamentals of climatic conditions and its impact on environment	K2 & K6					
CO4	Realizing the nature of pollution and the ways for its control/reduction	K4 & K5					
CO5	Impact of environmental studies on solid waste management	K2 & K6					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create

	Units							
	The Environment: Physical environment; biotic environment; biotic and abiotic							
I	interactions. Habitat and niche: Concept of habitat and niche; niche width and overlap;							
	fundamental and realized niche;							
	Population ecology: Characteristics of a population; population growth curves; population							
II	regulation; life history strategies (<i>r</i> and <i>K</i> selection); concept of meta population-demes and							
	dispersal, interdemic extinctions,							
	Species interactions: Types of interactions, interspecific competition, herbivory, carnivory,							
III	pollination, symbiosis. Community ecology: Nature of communities; community structure							
	and attributes; levels of species diversity and its measurement; edges and ecotones.							
	Ecosystem: Structure and function; energy flow and mineral cycling (CNP); primary							
IV	production and decomposition; structure and function of some Indian ecosystems:							
	terrestrial (forest, grassland) and aquatic (fresh water, marine, eustarine).							
	Applied ecology: Environmental pollution; global environmental change; biodiversity-							
	status, monitoring and documentation; major drivers of biodiversity change; biodiversity							
\mathbf{V}	management approaches - Waste management. Conservation biology: Principles of							
	conservation, major approaches to management, Indian case studies on							
	conservation/management strategy (Project Tiger, Biosphere reserves).							

- 1. Sharma, P.D. 2009. Ecology and Environment, Rastogi Publication, India, pp-616.
- 2. Calabrese, E.J. 1978. Pollutants and High-Risk Groups, John Wiley, pp-286.
- 3. Raven, P.H. and L.R. Berg, G.B. Johnson, 1993. Environment, Saunders College Publishing, pp-579.
- 4. Cunningham, W. P. and B. W. Saigo, 1999. Environmental Science, McGraw Hill Boston, 5th Edition.
- 5. Online courses.nptel.ac.in / noc 19 g e 23/preview
- 6. Class central.com/course/swayam -ecology and environment 14021.

Recommended texts

- 1. Odum, E.P. 1893. Basic Ecology, Saunders & Co., Philadelphia, pp-383.
- 2. Barthwl, R.R. 2002. Environmental Impact Assessment, New Age International Publishers, New Delhi, India, pp-425.
- **3.** United Nations Environment Programme (UNEP). 1995. Global Biodiversity Assessment, Cambridge University Press, pp-1140.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	S	S	M	M	S	M	S	S	M	S	
CO2	S	S	M	M	L	S	S	S	M	M	
CO3	S	M	M	L	M	S	L	L	S	L	
CO4	M	M	S	S	M	L	L	S	S	S	
CO5	M	S	S	M	S	M	L	M	L	S	

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	14	14
Weightage % of course contribution to POs	3.0	3	3.0	2.8	2.8

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	II
CREDITS	2	COURSE TITLE	Skill Enhancement Course [SEC] – I
			Poultry Farming

Learning	Learning Objectives:					
The main	objectiv	res of this course are:				
LO) 1	Students should know basic concepts in Poultry farming.				
Expected	Course	Outcome:				
Upon com	Upon completion of this course, Students would have					
CO1	To understand the various practices in Poultry farming. To know					
	the needs for Poultry farming and the status of India in global K2 & K3					
	marke	market.				
CO2	To be able to apply the techniques and practices needed or Poultry K1, K2 & K3					
	farming.					
CO3	To know the difficulties in Poultry farming and be able to propose K5 & K6					
	plans	plans against it.				

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
I	General introduction to poultry farming - Definition of Poultry - Past and present scenario of poultry industry in India - Principles of poultry housing - Poultry houses - Systems of poultry
_	farming
II	Management of chicks - growers and layers - Management of Broilers Preparation of
111	project report for banking and insurance.
III	Poultry feed management-Principles of feeding, Nutrient requirements for different stages
111	of layers and broilers - Feed formulation and Methods of feeding.
IV	Poultry diseases-viral, bacterial, fungal and parasitic (two each); symptoms, control and
1 1	management; Vaccination programme.
V	Selection, care and handling of hatching eggs - Egg testing. Methods of hatching Brooding
·	and rearing Sexing of chicks Farm and Water Hygiene - Recycling of poultry waste.
Read	ing list

- 1. Sreenivasaiah., P. V., 2015. Textbook of Poultry Science. 1st Edition. Write & Print Publications, New Delhi 2.
- 2. Jull A. Morley, 2007. Successful Poultry Management. 2nd Edition. Biotech Books, New Delhi"
- 3. Hurd M. Louis, 2003. Modern Poultry Farming. 1st Edition. International Book Distributing Company, Lucknow."
- 4. Life and General Insurance Management"

Recommended texts

- 1. CARROTT, I, C. Poultry industry of India, Burma and Ceylon. Rel. Poultry Jour. 30: 153, 155. Mar. 1923. 47.8 R27 Encouragement of the industry "by local Governments and characteristics of the jungle fowl.
- 2. http://www.asci-india.com/BooksPDF/Small%20Poultry%20Farmer.pdf
- 3.https://nsdcindia.org/sites/default/files/MC AGR-Q4306 Small-poultry-farmer-.pdf
- 4. http://ecoursesonline.iasri.res.in/course/view.php?id=335
- 5. https://swayam.gov.in/nd2_nou19_ag09/preview

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	L	S	M	L	S	S	S	M
CO2	S	L	M	M	S	M	M	M	S	S
CO3	S	M	M	M	S	S	S	S	M	M

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	3	3	3
Weightage	8	8	9	9	9
Weightage % of course contribution to POs	2.7	2.7	3.0	3.0	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	III
CREDITS	5	COURSE TITLE	CORE VII: Genetics

Learning Obj	ectives:						
The main obje	The main objectives of this course are:						
LO1 Understanding DNA as genetic material, fine structure of DNA & R molecules, as well as physico-chemical properties of macromolecules.							
LO2	Gain insight into sequential events occurs during protein synth	nesis.					
LO3	3 Learn the structure and function of chromosome and chromosomal basis of genetic disorders.						
LO4	LO4 To acquire knowledge about microbial genetics.						
LO5	LO5 To provide information about rDNA technology and its application.						
Expected Cou	rrse Outcome:						
On the success	sful completion of the course, student will be able to						
CO1	Explain the organization and functions of genetic material in the living system.	K1 & K2					
CO2	Understand various sequential processes in protein synthesis	K1 & K2					
CO3	Explicate the structures and functions of chromosomes and identify the diseases caused by the chromosomal abnormalities.						
CO4							
CO5 Understand the principle and application of rDNA technology for the welfare of human being.							

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Structure, properties and functions of genetic materials:DNA as the genetic Materials -
I	alternate and unusual forms of DNA - Physical and Chemical properties of nucleic acid,
	base properties, denaturation and renaturation.
II	Genetic code - Methods of deciphering the genetic code and general features of the code word dictionary. Chromosomal genetics: Molecular structure of chromosomes - Variation in chromosome number and structure - Chromosome nomenclature - Chromosomal syndromes- Klinfelter, Turner and Downs Syndrome.
III	Microbial Genetics: Genetics of Virus - Viral chromosome, Lytic cycle, Lysogenic cycle - Bacterial genetics -Bacterial genome - Gene transfer mechanisms in bacteria and virus - conjugation, transduction and transformation.
IV	Recombinant DNA technology: Recombinant DNA technology - Overview - Tools for Recombinant DNA Technology - Vectors PBR 322, Techniques used in recombinant DNA technology - generation of DNA fragments - Restriction endonucleases, DNA modifying enzymes, Ligases.
V	Introduction of rDNA into host cell - calcium chloride mediated gene transfer - <i>Agrobacterium</i> mediated DNA transfer, electroporation, microinjection, liposome fusion, particle gun bombardment - Selection and screening of transformed cells - Expression of cloned gene; Application of rDNA technology in human welfare - Environment, Medicine and Agriculture.

- 1. Gardner, E. J., M. J. Simmons and D.P. Snustad. 2006. Principles of Genetics. 8th Edition, John Wiley & Sons. INC. New York, pp-740.
- 2. Brooker, R. J. 2014. Genetics: Analysis and Principles. 5th Edition, McGraw Hill Publsiher, pp-880.
- 3. Russell, P.J. 2005. Genetics: A Molecular Approach (2nd Edition). Pearson/Benjamin Cummings, San Francisco, pp-850.
- 4. https://onlinecourses.swayam2.ac.in/cec21 bt02/preview
- 5. https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/the-genetic-code

Recommended texts

- 1. Griffiths, A. J. F., H. J. Muller, D. T. Suzuki, R. C. Lewontin and W. M. Gelbart. 2012. An Introduction to Genetic Analysis. 11th Edition, W. H. Greeman. New York.
- 2. Snustad, D.P., Simmons, M.J. 2015. Principles of Genetics, John Wiley Publications, pp-784.
- 3. Watson, J. D., T. A. Baker, S. P. Bell, Alexander Gann, Michael Levine, Richard Losick. 2003. Molecular Biology of the Gene, (5th Edition). Cold Spring Harbor Laboratory Press, pp-912.
- 4. Klug, W. S. and M. R. Cummings, C. A. Spencer. 2005. Concepts of Genetics, Benjamin Cummings Publishing Company.
- 5. Harti, D. L. 2002. Essential Genetics, A Genomic Perspective, Jones & Bartlet.
- 6. Krebs, J. E., E.S. Goldstein, S.T. Kilpatrick. 2018. Lewin's Genes XII, Jones & Bartlet Publisher, pp-613.
- 7. Watson, J. D., T. A. Baker S. P. Bell, A. Cann, M. Levine and R. Losick, 2014. Molecular Biology of Gene 7th Edition, Pearson Education RH Ltd. India.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	L	M	S	S	S	L	M	S
CO2	S	M	M	M	S	M	M	M	L	S
CO3	M	S	M	L	M	S	M	M	S	M
CO4	S	M	S	M	M	S	S	S	S	S
CO5	S	S	S	M	Е	S	M	S	M	M

^{*}S - Strong; M - Medium; L - Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	14	14
Weightage % of course contribution to POs	3.0	3.0	3.0	2.8	2.8

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	III
CREDITS	5	COURSE TITLE	CORE VIII: Evolution

Learning Ob	jectives:						
The main obje	The main objectives of this course are:						
LO1	To critically analyze the concepts of evolution in order to						
LO2	Understand the factors responsible for origin and generation or	f diversity among					
	living beings and						
LO3	To develop strategies for sustenance of life on this planet						
LO4	To critically analyse the concepts of evolution to.						
Expected Co	urse Outcome:						
On the succes	sful completion of the course, student will be able to						
CO1	To understand the concept of evolution. It provides a	K1 & K3					
	comprehensive account of evidence to support concept of						
	evolution and different theories for exploring the mechanism of						
	evolution.						
CO2	Study the origin of eukaryotic cells; Evolution of unicellular	K1 & K2					
	eukaryotes; Anaerobic metabolism, photosynthesis, and aerobic						
	metabolism.						
CO3	Understand the major events in the evolutionary time scale; K2 & K3						
	Origins of unicellular and multi-cellular organisms.						
CO4	Comprehend the origin of new genes and proteins; Gene K2 & K4						
	duplication and divergence.						
CO5	Appreciate the concepts and rate of change in gene frequency	K4 & K5					
	through natural selection, migration and random genetic drift						

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Emergence of evolutionary thoughts: Lamarck and Darwin – concepts of variation,
I	adaptation, struggle, fitness and natural selection – Mendelism - Spontaneity of mutations.
	Origin of cells and unicellular evolution: Origin of basic biological molecules -
II	Abiotic synthesis of organic monomers and polymers - Concept of Oparin and
11	Haldane - Experiment of Miller (1953) - The first cell - Evolution of prokaryotes -
	Origin of eukaryotic cells - Evolution of unicellular eukaryotes.
	Paleontology and evolutionary history: The evolutionary time scale - Eras, periods
III	and epoch - Major events in the evolutionary time scale - Stages in primitive
	evolution including Homosapiens
	Molecular evolution: Molecular divergence - Molecular tools in phylogeny,
IV	classification and identification - Protein and nucleotide sequence analysis - Origin
	of new genes and proteins - Gene duplication and divergence

V	The mechanisms: Population genetics - Populations, Gene pool, Gene frequency - Hardy-Weinberg Law - concepts and rate of change in gene frequency through natural selection, migration and random genetic drift- Adaptive radiation - Isolating mechanisms – Speciation - Allopatricity and Sympatricity - Convergent evolution - Sexual selection - Co-evolution - Altruism and evolution

- 1. Bergstrom, C. T. and L. A. Dugatkin. 2012. Evolution, Second MEDIA Edition. W.W. Norton & Company, International Student Edition, pp-756.
- 2. Jobling, M., E. Hollox, M. Hurles, T. Kivisild and C. T. Tyler Smith. 2014. Human Evolutionary Genetics. Second Edition. Garland Sciences, London, pp-650.
- 3. Veer Bala Rostogi, 2018. Organic Evolution (Evolutionary Biology), Thirteenth Edition Vinoth Kumar Jain, Scientific International (Pvt.) Ltd, New Delhi, pp-590.
- 4. https://www.flipkart.com/books/evolution~contributor/pr?sid=bks
- 5. http://www.evolution-textbook.org/
- 6. https://onlinelibrary.wiley.com/journal/15585646
- 7. http://darwin-online.org.uk/

Recommended texts

- 1. Strickberger. M. W. 2000. Evolution. Third Edition, Jones Bartlett Publishers, pp-722.
- 2. Hall B. K. and B. Hallgrimsson. 2014. Strickberger's Evolution. Fifth Edition, Bartlett Learning, An Ascend Learning Company, pp-642.
- 3. Barton, N.H., D. Briggs, J.A. Eisen David, D.B. Goldstein and N.H. Patel. 2007. Evolution. Cold Spring Harbor Laboratory Press, pp-833.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	L	S	M	L	M
CO2	S	S	L	S	S	M	S	S	S	S
CO3	S	M	S	S	S	S	S	M	M	M
CO4	S	S	S	S	S	M	S	S	S	L
CO5	S	S	S	M	M	S	S	L	S	M

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	15	15	14	15
Weightage % of course contribution to POs	2.8	3.0	3.0	2.8	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	III
CREDITS	5	COURSE TITLE	CORE IX: Animal Physiology

Learr	ing Objectives:					
The main obj	The main objectives of this course are:					
LO1	Students acquire the basic knowledge on physiology of d animals and human.	ifferent organs in				
LO2	Understand the functions of different systems such as digestion circulatory system, respiration and nervous system of animal structure and functions of various organs.					
Expected Co	urse Outcome:					
On the succes	sful completion of the course, student will be able to					
CO1	Understand the functions of different systems of animals	K1				
CO2	Learn the comparative anatomy of heart structure and functions	K2				
CO3	Know the transport and exchange of gases, neural and chemical regulation of respiration K2 & K4					
CO4	Acquire knowledge on the organization and structure of central and peripheral nervous systems	K3 & K5				
CO5	Acquire knowledge on hormones and their function.					

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6- Create

	Units
I	Blood and circulation: Blood corpuscles, haemopoiesis and formed elements, plasma function, blood volume, blood volume regulation, blood groups, haemoglobin. Cardiovascular system: heart structure, myogenic heart, specialized tissue, ECG – its principle and significance, cardiac cycle, heart as a pump, blood pressure.
II	Respiratory system: respiratory organs in different species, anatomical considerations, transport of gases, exchange of gases, waste elimination, neural and chemical regulation of respiration
Ш	Nervous system: Neurons, action potential, Neuro muscular junction, Neurotransmitters. Muscle: Structure of skeletal muscle. Mechanism of muscle contraction, Properties of muscle. Sense organs: Vision, hearing and tactile response
IV	Digestive system: Digestion, absorption, energy balance, BMR. Excretory system: Physiology of excretion, kidney, urine formation, urine concentration, waste elimination, micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance
V	Endocrinology and reproduction: Endocrine glands, basic mechanism of hormone action, hormones responsible for reproductive processes- gametogenesis, ovulation, neuro endocrine regulation.

- 1. Prosser C. L. 1991, Comparative Animal Physiology. Part A: Environmental and Metabolic Animal Physiology. Wiley-Liss Publishers, pp-592
- 2. Hoar, S.W. 1983, General and Comparative Physiology, Prentice Hall Publication, pp-928.
- 3. Randall, D., W. Burggren, K. French and R. Eckert.2001, Animal Physiology Mechanisms and Adaptations, New York: W.H. Freeman and Co., pp-

- 4. Nelson K. S. 1997. Animal Physiology: Adaptation and Environment, Cambridge University Press, pp- 617.
- 5. Dantzler, W.H. 1997. Comparative Physiology (Handbook of Physiology), Volumes I and II. Edited by William H. Dantzler. pp 1824 Published for the American Physiological Society by Oxford University Press Inc., New York. Oxford University Press Canada, Toronto.
- 6. https://swayam.gov.in/nd1_noc20_bt42/preview
- 7. https://www.classcentral.com/course/swayam-animal-physiology-12894
- 8. https://swayam.gov.in/nd1_noc20_hs33/preview

Recommended texts

- 1. Shepherd, G. M. 1994. Neurobiology, OUP USA Publsiher, pp-774.
- 2. Hainsworth, F.R. 1981. Animal Physilogy: Adaptation in function, Addison Wesley Longman Publishers, pp-669.
- 3. Mcfarland, D. 1999. Animal Behaviour: Psychobiology, Ethology and Evolution, Longman Publisher, pp-592.
- 4. Gorden, M.S. *et al.*, 1977. Animal Physiology: Principles and Adaptation, New York, Third Edition.
- 5. Ahearn, G.A. *et al.*, 1988. Advances in Comparative and Environmental Physiology 2, Springer Publishers, pp-252.
- 6. Hill, R.W. 1976. Comparative Physiology of Animals: Environmental Approach, Longman Higher Education Publisher, pp-656.
- 7. Withers, P.C. 1992. Comparative Animal Physiology, Brooks/Cole Publisher, pp-900.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	M	S	M	L	S	M	S	S
CO2	S	S	M	S	S	S	S	M	S	S
CO3	S	M	S	S	S	M	L	S	M	S
CO4	S	S	S	S	S	L	M	S	S	M
CO5	S	S	S	M	M	M	M	L	M	M

S - Strong; M - Medium; L - Low

		0111080			
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	14	15	15	15
Weightage % of course contribution to	2.8	2.8	3.0	3.0	3.0
POs					

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	5	SEMESTER	III
CREDITS	4	COURSE TITLE	CORE X: Industry Module- Medical Laboratory Techniques

Learning	Learning Objectives:					
The main	The main objectives of this course are:					
L	LO1 Students should understand the different protocols and procedures to collect clinical					
	samples.					
Expected	Course Outcome:					
Upon cor	npletion of this course, Students would have					
CO1	Understand protocols and procedures to collect clinical samples	K2 & K3				
	for blood analysis.	KZ & KS				
CO2	To study human physiology. K4 & K5					
CO3	Explain the characteristics of clinical samples. K3, K4 & K5					
CO4	Demonstrate skill in handling clinical equipment. K4 & K5					
CO5	Evaluate the haematological and histological parameters of	V2 V1 V5 8, V6				
	biological samples. K3, K4, K5 & K					

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Laboratory safety - toxic chemicals and biohazards waste- biosafety level- good laboratory
I	practice - hygiene and health issue - physiology effect of alcohol, tobacco, smoking & junk
	food & its treatment - biomedical waste management.
	Composition of blood and their function- collection of blood & lab procedure-haemopoiesis-
	types of anaemia- mechanism of blood coagulation- bleeding time- clotting time-
II	determination of hemoglobin-erythrocyte sedimentations rate- packed cell volume- Total
11	count of RBC & WBC- Differential count WBC- blood grouping and typing- haemostasis-
	bleeding disorder of man - Haemolytic disease of newborn, Platelet count, reticulocytes count,
	Absolute Eosinophil count.
	Definition and scope of microbiology- structure and function of cells - parasites - Entamoeba-
III	Plasmodium- Leishmania and Trypanosome-Computer tomography (CT scan) - Magnetic
	Resonance imaging - flowcytometry - treadmill test - PET.
	Cardiovascular system- Blood pressure - Pulse - regulation of heart rate, cardiac shock. Heart
IV	sounds, Electrocardiogram (ECG) - significance - ultra sonography- Electroencephalography
	(EEG).
	Handling and labelling of histology specimens - Tissue processing - processing of histological
\mathbf{V}	tissues for paraffin embedding, block preparation. Microtomes – types of microtomes- sectioning, staining - staining methods - vital staining - mounting- problems encountered
	during section cutting and remedies - Frozen section techniques- freezing microtome.

- 1. Godker, P. B. and Darshan, P, Godker, 2011. Text book of medical Laboratory Technology, Mumbai.
- 2. Guyton and Hall, 2000. Textbook of medical Physiology, 10th edition, Elseiner, New Delhi.
- 3. Mukerjee, K.L, 1999. Medical Laboratory Technology- Vol,I,II,III. Tata MC GrawHill, New Delhi.
- 4. Sood, R, 2009. Medical Laboratory technology, Methods and interpretation.

Recommended texts

- 1. Manoharan, A, and Sethuraman, 2003. Essential of Clinical Heamatology, Jeypee brothers, New Delhi.
- 2. Richard, A, McPherson, Mathew, R, Pincus, 2007. Clinical and management by laboratory methods, Elsevier, Philadelphia. Published by Tata McGraw-Hill Education Pvt. Ltd.,
- 3. Ochei. J., A. Kolhatkar (2000). Medical Laboratory science: Theory and practice, Published by Tata McGraw-Hill Education Pvt. Ltd, First edition.

	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	S	M	S	M	M	S	M	M	L	M		
CO2	S	S	M	S	S	S	L	M	S	S		
CO3	M	S	S	S	S	S	S	S	S	M		
CO4	S	S	M	M	S	M	M	M	M	S		
CO5	M	M	S	S	M	S	M	M	S	S		

S - Strong; M - Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	2
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	14
Weightage % of course contribution to POs	3.0	3	3.0	3.0	2.8

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	III
CREDITS	3	COURSE TITLE	ELECTIVE V: Sericulture

Learni	Learning Objectives:								
The ma	The main objectives of this course are:								
	LO1 Students should know basic concepts and techniques in Ser	iculture.							
Expect	ed Course Outcome:								
Upon c	Upon completion of this course, Students would have								
CO1	To understand the various practices in sericulture. To know the needs for sericulture and the status of India in global market. K2 & K3								
CO2	Able to apply the techniques and practices needed for sericulture.	K1, K2 & K3							
CO3	To know the difficulties in sericulture and be able to propose plans against it.	K5 & K6							

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units						
	Introduction to textile fibers; types- natural and synthetic fibers; sources of silk fiber- Eri, Tasar,						
I	Muga; properties and importance of silk fiber. History, development, status, characteristics, and						
	advantages of sericulture in India.						
	Host plants; Moriculture- distribution, morphology, propagation- seedling, cutting, grafting,						
II	layering and micropropagation methods, maintenance- irrigation, manuring and pruning, pests						
	and diseases of mulberry.						
	Bombyx mori- morphology, anatomy-Silk gland, digestive, reproductive system, life cycle,						
III	geographical locations, larval moults, voltinism, indigenous and commercial races. Diapause.						
	Egg-storage and transportation.						
	Bombyx mori- Vsoltinism, Diapause, Egg-storage and transportation. Rearing houses and						
	equipment. Rearing operations- disinfection, brushing, feeding and spacing. Moulting, spinning,						
IV	and harvesting. Rearing methods- Chawki, Late age worm rearing-s shelf-rearing, floor-rearing						
	and shoot rearing. Diseases of Bombyx mori- protozoan, bacterial, viral and fungal. Pests of						
	silkworm- Uzi fly, dermestids, mites, ants, nematodes.						
	Physical and commercial characteristics of cocoons. Cocoon harvesting and marketing. Cocoon						
\mathbf{V}	sorting, stifling, deflossing, riddling, cooking, brushing, reeling, and re-reeling. Weaving. By-						
	products of sericulture industry.						

- 1. G. Ganga and J. Sulochana Chetty. 2019. An introduction to sericulture, 2nd edition, Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 2. M. Johnson and M. Kesary. 2019. Sericulture, Saras publication, Tamilnadu.
- 3. Singh, Amardev & Ravinder Kumar. 2013. Sericulture handbook Vol 1, Biotech.
- 4. M. Madan Mohan Rao. An Introduction to Sericulture, 2nd edition, BS Publications.

Recommended websites

- 1. https://agritech.tnau.ac.in/sericulture/
- 2. https://csb.gov.in/

	Mapping with Programme Outcomes*											
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10		
CO1	M	S	S	L	M	L	M	S	M	L		
CO2	S	M	M	M	S	M	M	S	M	M		
CO3	M	S	M	S	M	M	M	L	M	S		

*S - Strong; M - Medium; L- Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	3	3	3
CO3	3	3	3	3	3
Weightage	9	8	9	9	9
Weightage % of course contribution to POs	3.0	2.7	3.0	3.0	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	III
CREDITS	3	COURSE TITLE	ELECTIVE V: Stem cell biology

Learni	Learning Objectives								
The ma	The main objectives of this course are:								
	LO1 Students should know understand the basics of stem cells								
Expect	Expected Course Outcome:								
On the	On the successful completion of the course, student will be able to								
CO1	Understand the basic knowledge of stem cells and their origin K1 & K2								
CO2	Differentiating the embryonic and adult stem cells K3 & K4								
CO3	Understand and apply the current stem cell therapies for their research K5								

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
I	Introduction to stem cell biology: Stem cell definition, origin and hierarchy, stem cell properties, Identification and Characterization, potency and differentiation, niche of stem cell, overview of different stem cell types (embryonic stem cells, adult stem cells and induced pluripotent stem cells).
II	Embryonic stem (ES) cell: Characterization and properties of ES cells, pluripotency and self-renewal of ES cells; molecular mechanisms regulating pluripotency and maintenance of the stem state, progressive differentiation of ES cells into ectoderm lineage organs (skin, brain and nerve), mesoderm lineage organs (heart, kidney, muscle, bone and blood), and endoderm lineage organs (lung, liver, stomach, pancreas and intestine).
ш	Adult stem cells: Mesenchymal stem cells (MSCs) - sources, properties (plasticity, homing and engraftment), potency and characterization; Haematopoietic stem cells (HSCs) - sources, properties, potency and characterization; steps involved in production of induced pluripotent stem cells (iPSCs); role of Yamanaka factor in iPSCs.
IV	Stem cell and aging: aging theory; cell cycle; telomere and telomerase; senescence of stem cell; role of stem cell in aging; tissue repair and regeneration of adult stem cell.
V	Current stem cell therapies: Advantages and disadvantages of ES cells and adult stem cells (MSCs and HSCs) therapy; Ethical concern on stem cell therapy; current stem cell therapy for various diseases; clinical outcome of stem cell therapy; state of clinical trials in adult stem cells for various diseases.

- 1. Kiessling, A.A. 2006. Human Embryonic Stem Cells (Second Ed.), Jones & Barlett Publishers.
- 2. Lanza, R. and A. Atala. 2005. Essentials of Stem Cell Biology. Academic Press, pp-712.
- 3. Turksen, K. 2004. Adult Stem Cells. Humana Press, Inc, pp-429.
- 4. Lanza, R. *et al.* 2004. Handbook of Stem Cells: Embryonic/Adult and Fetal Stem Cells (Vol. 1 & 2). Academic Press, pp-1626.
- 5. Institute of Medicine, 2002. Stem cells and the future of regenerative medicine. National Academy Press, pp-112.
- 6. Marshak, D., R.L. Gardener and D. Gottlieb. 2001. Stem Cell Biology, Cold Spring Harbour Monograph Series, 40, pp-550.
- 7. Booth, C. 2003. Stem Cell Biology and Gene Therapy, Cell Biology International, Academic Press.

Recommended texts

- 1. Quesenberry, P.J., G.S. Stein, B. Forget and S. Weissman. 2001. Stem Cell Biology and Gene Therapy, Wiley Publishers, pp-584.
- 2. Sell, S. and Totowa, N.J. 2004. Stem Cells Handbook, Humana Press, pp-534.
- 3. Sullivan, S., C. A. Cowan and K. Eggan. 2007. Human Embryonic Stem Cells: The Practical Handbook, Wiley Publishers, pp-424.
- 4. Battler, A., and Leo, J. 2007. Stem Cell and Gene-Based Therapy: Frontiers in Regenerative Medicine, Springer Publication, pp-422.

	Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
CO1	M	S	M	S	M	S	M	S	M	M	
CO2	S	S	M	S	S	S	S	S	S	L	
CO3	S	M	S	S	S	S	M	L	S	M	

*S - Strong; M - Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	2	3
CO3	3	3	3	3	3
Weightage	9	9	8	8	9
Weightage % of course contribution to POs	3.0	3.0	2.7	2.7	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	3	SEMESTER	III
CREDITS	2	COURSE TITLE	Skill Enhancement Course [SEC] – II Dairy Farming

Learni	Learning Objectives:						
The ma	The main objectives of this course are:						
	LO1 To analyze the milk production process						
	LO2	To explain milk safety and quality requirements					
	LO3	To describe the care needed to maintain dairy cattle					
Expect	ed Cours	se Outcome:					
Upon co	ompletion	n of this course, Students would have					
CO1	To und	erstand the various practices in Dairy farming. To know the	K2 & K3				
	needs f	or Dairy farming and the status of India in global market.					
CO2	To be able to apply the techniques and practices needed for Dairy K1, K2 & K3						
	farming.						
CO3	To kno	K5 & K6					
	plans a	gainst it.	110 66 110				

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Introduction to Dairy Farming- Advantages of dairying- Classification of breeds of cattle-
I	Indigenous and exotic breeds- Selection of dairy cattle. Breeding-artificial insemination-
	Dairy cattle management.
II	Construction of Model Dairy House - Types of Housing - Different Managemental
111	Parameters - Winter Management - Summer Management
	Feedstuffs available for livestock- Roughages -Concentrates - Energy rich concentrates -
III	Protein rich concentrates - Mineral Supplements - Vitamin Supplements - Feed additives -
111	Feeding management - Calves Feeding - Feeding of adults - Feeding of pregnant dairy
	animals - Feeding pregnant heifer.
IV	Milk-Composition of milk-milk spoilage-pasteurization - Role of milk and milk products
1.4	in human nutrition – Dairying as a source of additional income and employment.
V	Contagious disease - Common Bacterial - Protozoan - Helminth and Viral Diseases -
V	Parasitic Infestation - Vaccination - Biosecurity.

- 1. The Veterinary Books for Dairy Farmers by Roger W. Blowey.
- 2. Hand Book of Dairy Farming by Board Eiri.
- 3. Handbook of animal husbandry TATA, S.N ed., ICAR 1990
- 4. Prabakaran, R. 1998. Commercial Chicken production. Published by P. Saranya, Chennai.
- 5. Hafez, E. S. E., 1962. Reproduction in Farm Animals, Lea &Fabiger Publisher.

Recommended texts

- 1. https://agritech.tnau.ac.in/farm_enterprises/Farm%20enterprises_%20Dairy%20unit.html
- 2. https://www.google.co.in/search?tbo=p&tbm=bks&q=inauthor:%22Tata,+S.N.,+ed%22

- 3. 15. James. N. Marner, 1975. Principles of dairy processing, wiley eastern limited, New Delhi.
- 4. Schmidt, G. H., Van Vleck, L. D., & Hutjens, M. F. (1988). Principles of Dairy Science (2nd Edition). Englewook Cliffs: Prentice Hall.

	Mapping with Programme Outcomes*									
COs	COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1									PO10
CO1	M	S	L	L	S	S	M	S	L	M
CO2	M	S	S	S	M	S	M	L	S	S
CO3	M	S	S	S	S	S	S	S	S	M

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	2
CO3	3	3	3	3	3
Weightage	9	9	9	8	8
Weightage % of course contribution to POs	3.0	3	3.0	2.7	2.7

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	IV
CREDITS	5	COURSE TITLE	CORE XI: Immunology

Learning Ob	Learning Objectives:					
The main obj	ectives of this course are:					
LO1 To impart conceptual understanding of functional organization of immune system and its responsiveness in health and disease.						
LO2	To enable a successful performance in Immunology componer	nt of CSIR-UGC				
	NET.					
Expected Co	urse Outcome:					
Students wou	ld have acquired clear knowledge on					
CO1	Various basic concepts in immunology and organization of immune systems.	K2				
CO2	Mechanisms of immune response in health and their defects in various diseases.	K2 & K4				
The application of immunological principles in biomedical sciences including blood transfusion, tissue grafting and organ transplantation.						
CO4	Vaccinology and its importance in disease management	К3				
CO5	To learn about various disorders of immune system.	K5				

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
I	Introduction to Immunology: An overview; Scope of immunology, recognition of self and non-self as a basic functional feature of immune system; Concepts of external and internal defense systems; External (first line / innate) defense system: components, distribution, salient functions; Internal (second line / acquired) immune system: cellular and humoral immune components- distribution, salient functions-
	primary and secondary immune responses; Immune tissues / organs: types, anatomical location, structure and development; lymphocyte traffic during development; Types of immunity: innate and acquired - types, functional features; concept of adaptive immunity
II	Antigens: Definition, characteristic features and classification; Antigenicity versus immunogenicity; Adjuvants: definition, types and applications
III	Major effector components of cellular immune system: Lymphocytes - types, morphology, clones; sub-populations, distribution, B and T cell receptors, B and T cell epitopes, Toll-like receptors; Antigen presenting cells: antigen processing and presentation, MHC molecules and their immunologic significance.
IV	Major effector components of humoral immune system: Antibodies - Primary structure, classification, variants and antigen-antibody interactions; Structural and functional characteristics of various antibody classes; Generation of diversity;

	Monoclonal antibodies: definition, production and applications; Antibody									
	engineering and its applications. Complement system - Components, three major									
	activation pathways, and immune functions including anaphylaxis and									
	inflammation. Cytokines -Definition and salient functional features; Interleukins:									
	definition, types (lymphokines and monokines), and functions. Interferons - Origin,									
	types and functions									
	Diseases and immune responses: Hypersensitivity: definition, Types I to IV and									
	immune manifestations; Auto-immune diseases: onset, spectrum of diseases, and									
V	major immune responses; Immunodeficiency diseases: types including SCID and									
•	consequences; Viral (HIV), bacterial (tuberculosis) and parasitic (malaria) diseases:									
	etiology, host immune responses and evasion by pathogens; Vaccines: types,									
	preparations, efficacies and recent developments									

- 1. Kuby, J. 1997. Immunology. W. H. Freeman & Co., New York, pp-670.
- 2. Male, D. J. Brostoff, D. B. Roth and I. Roitt. 2006. Immunology (7th edition), Mosby / Elsevier, Philadelphia, pp-472
- 3. Abbas, A. K and A. H. Lichtman. 2007. Cellular and Molecular Immunology (6th edition), W. B. Saunders, Philadelphia, pp-564
- 4. Coica, R. Sunshine, G. 2015. Immunology (Seventh Edition), Wiley Blackwell, UK, pp-406.

Recommended texts

- 1. Weir, D. M and J. Stewart. 1997. Immunology, Churchill Livingstone, London, pp-362
- 2. Janeway, C. A and P. Travers. 1997. Immunology, Garland Publ. Inc., London, pp-904
- 3. Peakman, M and D. Vergani. 1997. Basic and Clinical Immunology, Churchill Livingstone, London, pp-366
- 4. Parham, P. 2009. The Immune System (Third Edition), Garland Science, USA, pp-506
- 5. Weissman, I. Hood, L. Wood, W. 1978. Essential Concepts in Immunology, the Benjamin/Cummings, California, pp-165.
- 6. Hood, L. Weissman, I. Wood, W. Wilson, J. 1984. Immunology (Second Edition), the Benjamin/Cummings, California, pp-558.
- 7. Coica, R and Sunshine, G. 2009. Immunology A Short Course (Sixth Edition), John Wiley & Sons, USA, pp-391.
- 8. Doan, T. Melvold, R. Viselli, S. *et al.*, 2013. Immunology (Second Edition), Lippincott Williams & Wilkins, Maryland, pp-376.
- 9. Owen, J. A. Punt, J. Stanford, S. A. 2013. Kuby Immunology (7th Edition), Macmillan, England, pp-692.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	M	S	S	S	S	M	S	S	S
CO2	S	S	M	S	S	S	M	M	S	S
CO3	S	M	M	S	S	S	S	S	S	M
CO4	M	S	M	M	S	S	S	S	S	M
CO5	M	S	S	S	M	S	M	S	S	M

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	15	15	14	15
Weightage % of course contribution to POs	2.8	3.0	3.0	2.8	3

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc., ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	6	SEMESTER	IV
CREDITS	5	COURSE TITLE	CORE XII: Lab Course in Immunology

Learnin	Learning Objectives:					
The main	n objectiv	res of this course are:				
I	.O1	To provide hands-on training to perform specific lab courses in	n immunology			
		and research methodology.				
I	LO2	To enable clear understanding of the methodology through we	t – lab courses.			
Expecte	d Course	Outcome:				
Upon co	mpletion	of this lab course, the students				
CO1	Acquire ability to perform various immunological tests. K3 & K4					
CO2	as well as applications of research methods for quantitative/ qualitative K3 & K4					
	analysis of biochemical components.					
CO3	Demonstrate various basic concepts in immunology. K3 & K4					

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

- 1. Identification of various immune tissues and organs in chick.
- 2. Identification of various types of immune cells in peripheral blood smear
- 3. Separation of RBC as intact cellular antigen for immunization
- 4. Antigenic challenge of mammalian hosts through different routes, and comparative evaluation of their merits and demerits
- 5. Methods of blood sampling
- 6. Preparation and storage of antiserum
- 7. Agglutination reaction: Qualitative analysis of antigen-antibody reaction using human blood group system
- 8. Agglutination reactions: Determination of hemagglutination titer of IgM antibodies using human RBC
- 9. Detection of IgG by precipitation ring test
- 10. Detection of IgG by Ouchterlony double immuno-diffusion test
- 11. Detection of reactivity of IgG with fractionated antigens by immune electrophoresis
- 12. Separation of lymphocytes from peripheral blood and identification of T and B cells

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	M	S	L	L	S	S	M	S	L	M
CO2	M	S	S	S	M	S	M	L	S	S
CO3	M	S	S	S	S	S	S	S	S	M

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	2	3	3	3
CO3	3	3	3	3	3
Weightage	8	8	9	9	9
Weightage % of course contribution to POs	2.7	2.7	3.0	3.0	3.0

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc., ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	IV
CREDITS	3	COURSE TITLE	ELECTIVE VI: Aquaculture

Learn	earning Objectives:				
The m	The main objectives of this course are:				
	LO1	Students should know basic concepts in Aquaculture.			
	LO2	To maximize sustainable biomass yield.			
	LO3	To improve capacity building and utilize land effectively	for the aquaculture		
		sector			
Expec	cted Course Out	tcome:			
Upon	completion of th	is course, Students would have			
CO1	To develop knowledge on the fish farm and their maintenance.				
	Understand the	e methods of fish seed and feed production and develops	K1 & K2		
	knowledge on hatchery techniques				
CO2	To apply the knowledge about different culture methods in aquaculture				
	and gain knowledge on fish and shrimp breeding techniques and larval K3 & K4				
	culture				
CO3	Identifies the o	different fishes diseases, diagnosis and their management			
	strategies. Un	derstands Ornamental fishes and central aquaculture	K5 & K6		
	organizations				

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
I	Importance of aquaculture- Present status, prospects and scope in India. Freshwater aquaculture- Brackish water aquaculture- Mariculture - Metahaline culture in India. Types of fish culture -Types of fishponds for culture practice. Topography, site selection - water quality - soil condition and quality – structure and construction design and layout - inlet and outlet. Water quality management for aquaculture. Control of parasites, predators and weeds in culture ponds. Fish farm implements - Secchi disc - aerator - pH meter - tools for hypophysation - feeding trays – Fishing gears used in aqua farming.
П	Procurement of seed from natural resources- collection methods and segregation. Hatchery technology for major carps and freshwater prawn. Artificial seed production — Breeding under control conditions, induced breeding technique, larval rearing, packing and transportation. Commercial substitute for pituitary extracts. Classification of fish feed- Artificial feeds. Types, Feed - formulation - feeding methods. Live feed-Microalgae, Rotifer, Artemia and their culture.
Ш	Shrimp hatchery technology - Hatchery design, brood stock management, spawning, larval rearing, Shrimp developmental stages, algal culture, packing and transportation. Shrimp culture technology - extensive culture methods semi- intensive - intensive culture methods - Biofloc technology - Culture operations (water quality, feed and health management) - harvesting, preservation and marketing. Brackish water fish culture.

	Edible and Pearl oyster culture - pearl production. Crab culture. Economic importance of
	Lobster, Sea urchin and Sea cucumber - their by-products. Types of Seaweeds - species
	and methods of culture – by-products
	Fish and Shrimp diseases and health management - infectious diseases - Bacterial,
IV	Fungal, Viral, Protozoan; Non-infectious - environmental and nutritional diseases.
	Diseases diagnosis, prevention and control measures.
	Types of ornamental fishes (freshwater and marine), their breeding behavior and biology.
v	Oviparous, Ovo-viviparous and Viviparous fishes. Setting and maintenance of freshwater
v	Aquarium tanks. Central aquaculture research organizations- CMFRI, CIBA, CIFT,
	CIFA, CIFE, MPEDA and its activities.

- 1. Pillay, T. V. R. (1990). Aquaculture: Principles and Practices. Blackwell Scientific Publications Ltd
- 2. Santhanam, R. (1990). Fisheries Science. Daya Publishing House.
- 3. Sinha, V.R. P. and Srinivastava, H. C. (1991). Aquaculture Productivity. Oxford and IBH Publications CO., Ltd., New Delhi.
- 4. Yadav, B. N. (1997). Fish and fisheries. Daya Publishing house, New Delhi.

Recommended texts

- 1. Das M. C. and Patnaik, P. N. (1994) Brackish water culture. Palani paramount Publications, Palani, T. N.
- 2. Day, F (1958). Fishes of India ,VoL I and Vol. II. William Sawson and Sons Ltd., London.
- 3. Jhingran, V. G. (1991). Fish and Fisheries of India. Hindustan Publishing Co., India
- 4. Maheswari. K. (1983) Common fish disease and their control. Institute of Fisheries Education, Powarkads (M.P).

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	S	S	S	M	M	S
CO2	S	S	S	M	S	S	S	M	S	S
CO3	S	S	S	S	S	S	S	S	S	M

*S-Strong; M-Medium; L-Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	2
CO3	3	3	3	3	3
Weightage	9	9	9	9	8
Weightage % of course contribution to POs	3.0	3.0	3.0	3.0	2.7

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc.,ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	IV
CREDITS	3	COURSE TITLE	ELECTIVE VI: Vermiculture

Learni	Learning Objectives:						
The ma	The main objectives of this course are:						
	LO1	Students should know basic concepts in Vermiculture.					
	LO2	Vermiculture products and their benefits in agriculture	practice, economics of				
		vermitechnology along with the practical difficulties are inc	luded.				
	LO3	The students will be aware about the role of microbes in worn	ns and in decomposition				
Expect	Expected Course Outcome:						
Upon c	ompletio	n of this course, Students would have					
CO1	To und	erstand the various practices in vermiculture. To know the	K2 & K3				
	needs for Vermiculture and the status of India in global market.						
CO2	Able to apply the techniques and practices needed for vermiculture. K1, K2 & K4						
CO3	To know the difficulties in Vermiculture and be able to propose K5 & K6						
	plans ag	gainst it.					

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units
	Earthworms - Taxonomic position, external features - shape, size, colour, segmentation, setae
	& clitellum. Body wall, coelom- locomotion, digestive, circulatory, respiratory, excretory &
I	nervous system. Reproductive system-Male & Female, copulation, cocoon formation &
	fertilization, development of earth worm. Vermitechnology- Definition, history, growth and
	development in other countries & India, significance.
	Vermiculture - definition, common species for culture; Environmental parmeters; culture
II	methods – wormery - breeding techniques; indoor and outdoor cultures - monoculture and
	polyculture - merits and demerits.
III	Vermicomposting of wastes in field pits, ground heaps, tank method, roof shed method, static
111	pile windrows, top fed windrows, wedges & bin method, harvesting the compost, storage.
	Applications of vermiculture - Vermiculture Bio-technology, vermicomposting, use of
IV	vermicastings in organic farming/horticulture, earthworms for management of
1 4	municipal/selected biomedical solid wastes; as feed/bait for capture/culture fisheries; forest
	regeneration.
	Potentials and constraints for vermiculture in India. Marketing the products of vermiculture -
	quality control, market research, marketing techniques – creating the demand by awareness
\mathbf{v}	and demonstration, advertisements, packaging and transport, direct marketing. Economic
•	importance of Earthworms: In sustainable agriculture, organic farming, earthworm activities,
	soil fertility & texture, soil aeration, water impercolation, decomposition & moisture, bait &
	food.

- 1. Sultan Ahmed Ismail, 2005. The Earthworm Book, Second Revised Edition. Other India Press, Goa, India.
- 2. Bhatnagar & Patla, 2007. Earthworm vermiculture and vermin-composting, Kalyani Publishers, New Delhi
- 3. Mary Violet Christy, 2008. Vermitechnology, MJP Publishers, Chennai.
- 4. Aravind Kumar, 2005. Verms & Vermitechnology, A.P.H. Publishing Corporation, New Delhi.
- 5. Ismail, S.A., 1997. Vermitechnology, The biology of earthworms, Orient Longman, India.

Recommended texts

- 1. https://agritech.tnau.ac.in/sericulture/
- 2. https://www.agrifarming.in/vermiculture-process-techniques-worm-farming
- 3. 11. Edwards, C.A., and Bother, B., 1996. Biology of earthworms, Chapman Hall Publication company.

Mapping with Programme Outcomes*										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	M	M	M	L	M	S	M	L	S
CO2	S	S	S	S	S	S	L	S	S	S
CO3	M	S	S	S	S	S	M	S	S	M

*S - Strong; M - Medium; L- Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	3	3	3	3	3
Weightage	8	9	9	8	9
Weightage % of course contribution to POs	2.7	3.0	3.0	2.7	3

PROGRAMME CODE	PGZOOA	PROGRAMME	M.Sc., ZOOLOGY
COURSE CODE		BATCH	2023-2025
HOURS	4	SEMESTER	III
CREDITS	2	COURSE TITLE	Skill Enhancement Course [SEC] – III Professional Competency Course: Intellectual Property Rights

Learnii	Learning Objectives:							
The ma	The main objectives of this course are:							
	LO1 Students should gain basic knowledge intellectual property.							
	LO2	It provides comprehensive knowledge to the students regarding In	ndian position of the					
		Copyright Law, 1957, Historical background and Development	of Copyright Law,					
		Infringement.						
Expecte	ed Cours	se Outcome:	_					
On the s	successfu	al completion of the course, student will be able to						
CO1	Claim t	he rights for the protection of their invention done in their project	K1 & K3					
	work.		MI W MS					
CO2	Identify	criteria's to fit one's own intellectual work in particular form	K4 & K5					
	of IPRs.							
CO3	To get							
	inventi	on, designs and thesis or theory written by students during their	K1, K2 & K3					
	project.							

K1- Remember; K2- Understand; K3- Apply; K4-Analyze; K5-Evaluate; K6- Create

	Units					
	Introduction to IPRs, Basic concepts and need for Intellectual Property - Patents, Copyrights,					
T	Geographical Indications, IPR in India and Abroad - Genesis and Development - the way					
1	from WTO to WIPO - TRIPS, Nature of Intellectual Property, Industrial Property,					
	technological Research, Inventions and Innovations - Important examples of IPR.					
	Meaning and practical aspects of registration of Copy Rights, Trademarks, Patents,					
II	Geographical Indications, Trade Secrets and Industrial Design registration in India and					
	Abroad					
	International Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agreement, Patent					
III	Act of India, Patent Amendment Act, Design Act, Trademark Act, Geographical Indication					
	Act.					
	Digital Innovations and Developments as Knowledge Assets - IP Laws, Cyber Law and					
IV	Digital Content Protection - Unfair Competition - Meaning and Relationship between					
	Unfair Competition and IP Laws - Case Studies.					
V	Infringement of IPRs, Enforcement Measures, Emerging issues - Case Studies.					
Readir	Reading list					
1.	Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents					
	and Trade Secrets", Cengage Learning, Third Edition, 2012.					

- 2. Prabuddha Ganguli,"Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011.
- 3. Edited by Derek Bosworth and Elizabeth Webster, The Management of Intellectual Property, Edward Elgar Publishing Ltd., 2013.

Recommended texts

- 1. V. Scople Vinod, Managing Intellectual Property, Prentice Hall of India pvt Ltd, 2012
- 2. S.V Satakar Intellectual property Rights and Copy Rights, Ess Publication, New Delhi, 2002.

	Mapping with Programme Outcomes*									
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	M	M	M	S	S	M	M	M
CO2	S	S	M	S	M	S	S	S	M	L
CO3	S	M	M	S	M	L	Ms	S	L	S

*S - Strong; M - Medium; L – Low

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	2	3	3	2	3
CO3	3	3	3	3	3
Weightage	8	9	9	8	9
Weightage % of course contribution to POs	2.7	3.0	3.0	2.7	3