M.Sc., PHYSICS

SYLLABUS

FROM THE ACADEMIC YEAR 2023 - 2024

Prescribed by

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

M.Sc., PHYSICS

Preamble

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

	GULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM RAMEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc., Physics
Programme Code	
Duration	PG – 2YEARS
Programme Outcomes (POs)	 PO1: Problem Solving Skill Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making. PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities. PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills. PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals. PO6: Employability Skill Incucate contemporary business practices to enhance employability skills in the competitive environment. PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur. PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society. PO 9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective. PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.

 solving, decision making and leadership skill that will facilitate startups and high potential organizations. PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and 	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions. PSO 2 - Entrepreneur To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
Programme Specific Outcomes (PSOs)PSO4 - Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world. PSO 5 - Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit. PSO 6 Students will utilize e-resources, digital tools and techniques for widening their knowledge base. PSO 7 Students gain exposure to programming language and skills. PSO 8 Student will appreciate the interplay of mathematics, physics and technology. PSO 9 Students will develop adequate knowledge and skills for employment	and antrannon association

Credits	Sem I	Sem II	Sem III	Sem IV	Total
Part A	18	18	18	18	72
Part B					
(i)Discipline– Centric/Generic Skill	2	2	2	2	8
(ii)Soft Skill	2	2	2	2	
(iii)Summer Internship/Industrial			2		10
Training			2		
Part C				1	1
Total	22	22	24	23	91

Component wise Credit Distribution

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

M. SC., DEGREE COURSE IN PHYSICS COURSE STRUCTURE 2023-2024

		S.	HRS	MA	AX MA	RKS
COURSE COMPONENTS	NAME OF THE COURSE	CREDITS	H.TSNI	CIA	EXT.	Total
Core-I	Paper 1- Mathematical Physics	5	7	25	75	100
Core-II	Paper 2 - Linear and Digital ICs and Applications	5	7	25	75	100
Core – III	Paper 3 - – Practical I	4	6	25	75	100
Discipline Centric Elective -I	Core Elective I – Option 1- Energy Physics (or) Core Elective I – Option 2 - Analysis of Crystal Structures	3	5	25	75	100
Generic Elective-II:	Core Elective II – Option 1 - Advanced Optics (or) Core Elective II – Option 2 - Non-linear Dynamics	3	5	25	75	100
	Total	20	30			

FIRST SEMESTER

SECOND SEMESTER

COURSE		ST	HRS	MAX MARKS		
COMPONENTS	NAME OF THE COURSE	CREDITS	INST. H	CIA	EXT.	Total
Core-IV	Paper 4 Statistical Mechanics	5	6	25	75	100
Core-V	Paper 5 Quantum Mechanics	5	6	25	75	100
Core –VI:	Paper 6 Practical - II	4	6	25	75	100
Elective- III	Core Elective III –Option1 Plasma Physics (or) Core Elective III– Option 2 Advanced Mathematical Physics	3	4	25	75	100
Elective – IV	Core Elective IV– Option 1 Solar Energy Utilization (or) Core Elective IV – Option 2 Characterization of Materials	3	4	25	75	100
NME	NME I - Medical Physics	2	4	25	75	100
		22	30			

					М	AX MA	RKS
COURSE COMPONENTS	NAME OF COURSE	CRED ITS	INST. HRS	EXA M HRS.		EX T.	al Tot
Core-VII	Paper 7 Classical Mechanics and Relativity	5	6	3	25	75	100
Core-VIII	Paper 8 Nuclear and Particle Physics	5	6	3	25	75	100
Core – IX	Paper 9 Numerical Methods and Computer Programming (FOTRAN/C) Theory	5	6	3	25	75	100
Core – X	Paper 10 Numerical Methods and Computer Programming (FOTRAN/C) Practical – III	4	6	3	25	75	100
Discipline Centric Elective - V	Core Elective V– Option 1-Materials Science (or) Core Elective V – Option II – Bio Physics	3	3	3	25	75	100
NME II	NME II – Sewage and Waste Water Treatment and Reuse	2	3	3	25	75	100
Internship/ Industrial Activity	Internship / Industrial Activity	2	-	-	100	-	100
		26	30				

THIRD SEMESTER

Internship will be carried out during the summer vacation of the first year and marks will be included in the Third Semester Marks Statement.

FOURTH SEMESTER

COUDCE		IC		AM 8S.	MAX	MARK	KS
COURSE COMPONENTS	NAME OF COURSE	CREDI TS	INST HRS	EXAN	CI A	EX T	Tot al
Core-XI	Paper 11 - Spectroscopy	5	6	3	25	75	100
Core-XII	Paper 12 –Practical – IV	5	6	4	25	75	100
Project with viva voce	Project with Viva-Voce	7	10	4	25	75	100
Elective - VI	Core Elective VI Option1 - Solid Waste Management (20% Theory 80% Practical) (or) Core Elective VI Option 2 - Microprocessor 8086 and Microcontroller 8051	3	4	3	25	75	100
Skill Enhancement course / Professional Competency Skill	SEC I – Communication Electronics	2	4	3	25	75	100
Extension Activity		1			100		100
		23	30				

ELECTIVE PAPERS

List 1

- 1. Energy Physics
- 2. Crystal Growth and Thin films
- 3. Analysis of Crystal Structures
- 4. Materials Science
- 5. Physics of Nano Science and Technology
- 6. Digital Communication
- 7. Communication Electronics
- 8. Astrophysics

LIST 2

- 9. Plasma Physics
- 10. Bio Physics
- 11. Non-linear Dynamics
- 12. Quantum Field Theory
- 13. General Relativity and Cosmology
- 14. Advanced Optics
- 15. Advanced Mathematical Physics

LIST 3 INDUSTRY ORIENTED ELECTIVE (IOE)

- 16. Advanced Spectroscopy
- 17. Microprocessor 8086 and Microcontroller 8051
- 18. Characterization of Materials
- 19. Medical Physics
- 20. Solid Waste Management
- 21. Sewage and Waste Water Treatment and Reuse
- 22. Solar Energy Utilization

(Note: Institutions can also frame such IOE courses more suitable for their locality.)

Paper-1 - MATHEMATICAL PHYSICS I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATHEMATICAL PHYSICS	Core				5	7	75

Pre-Requisites					
Knowledge of Matrices, vectors, differentiation, integration, differential equations					
Learning Objectives					
> To equip students with the mathematical techniques needed for understanding theoretical					
treatment in different courses taught in their program					

> To extend their manipulative skills to apply mathematical techniques in their fields

> To help students apply Mathematics in solving problems of Physics

UNITS	Course Details
UNIT I: LINEAR VECTOR SPACE	Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure – linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space –Eigen values and Eigen functions
UNIT II: COMPLEX ANALYSIS	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic fields and complex potentials (2) Heat problems - Parallel plates
UNIT III: MATRICES	Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices - Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley–Hamilton theorem –Diagonalization
UNIT IV: FOURIER TRANSFORMS & LAPLACE	Definitions -Fourier transform and its inverse Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions - Applications

_	

UNIT V: DIFFERENTIAL	Second order differential equation- Sturm-Liouville's theory - Series solution with simple examples - Hermite polynomials - Generating function - Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's
EQUATIONS	function and Reciprocity theorem
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists – A Comprehensive Guide (7th edition), Academic press. P.K. Chattopadhyay, 2013, <i>Mathematical Physics</i> (2nd edition), New Age, New Delhi A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt.Ltd., India B. D. Gupta, 2009, <i>Mathematical Physics</i> (4th edition), VikasPublishing House, New Delhi. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.
REFERENCE BOOKS	 E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest, New Delhi. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York
WEB SOURCES	 www.khanacademy.org https://youtu.be/LZnRIOA1_2I http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_R YTEU27vS_SIED56gNjVJGO2qaZ https://archive.nptel.ac.in/courses/115/106/115106086/

At the end of the course the student will be able to:

C01	Understand use of bra-ket vector notation and explain the meaning of complete	K1 K2
	orthonormal set of basis vectors, and transformations and be able to apply them	мі, м 2
CO2	Able to understand analytic functions, do complex integration, by applying	
	Cauchy Integral Formula. Able to compute many real integrals and infinite	K2, K3
	sums via complex integration.	
CO3	Analyze characteristics of matrices and its different types, and the process of	K A
	diagonalization.	Λ4
CO4	Solve equations using Laplace transform and analyze the Fourier	K A
	transformations of different function, grasp how these transformations can	N4, K5
	speed up analysis and correlate their importance in technology	NJ
CO5	To find the solutions for physical problems using linear differential equations	
	and to solve boundary value problems using Green's function. Apply special	K2, K5
	functions in computation of solutions to real world problems	
K1 - R	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	3

Paper- 2 - LINEAR AND DIGITAL ICs & APPLICATIONS | I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	LINEAR AND DIGITAL ICs AND APPLICATIONS	Core				5	7	75

Pre-Requisites
Knowledge of semiconductor devices, basic concepts of digital and analog electronics
Learning Objectives
To introduce the basic building blocks of linear integrated circuits.
To teach the linear and non-linear applications of anarctional applifiant

- To teach the linear and non-linear applications of operational amplifiers.
- > To introduce the theory and applications of PLL.
- \succ To introduce the concepts of waveform generation and introduce one special function ICs.
- Exposure to digital IC's

UNITS	Course Details
UNIT I:	
INTEGRATED	Introduction, Classification of IC's, basic information of Op-Amp 741 and
CIRCUITS AND	its features, the ideal Operational amplifier, Op-Amp internal circuit and
OPERATIONAL	Op-Amp.Characteristics.
AMPLIFIER	
	LINEAR APPLICATIONS OF OP-AMP: Solution to simultaneous
	equations and differential equations, Instrumentation amplifiers, V to I and
UNIT II:	I to V converters.
APPLICATIONS OF	NON-LINEAR APPLICATIONS OF OP-AMP:
OP-AMP	Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider,
	Comparators, Schmitt trigger, Multivibrators, Triangular and Square
	waveform generators.
	ACTIVE FILTERS: Introduction, Butterworth filters – 1st order, 2nd order
UNIT III:	low pass and high pass filters, band pass, band reject and all pass filters.
ACTIVE FILTERS &	TIMER AND PHASE LOCKED LOOPS: Introduction to IC 555 timer,
TIMER AND PHASE	description of functional diagram, monostable and astable operations and
LOCKED LOOPS	applications, Schmitt trigger, PLL - introduction, basic principle, phase
	detector/comparator, low pass filter, monolithic PLL and applications of
	PLL
UNIT IV:	VOLTAGE REGULATOR: Introduction, Series Op-Amp regulator, IC
VOLTAGE	Voltage Regulators, IC 723 general purpose regulators, Switching
REGULATOR &	Regulator.
D to A AND A to D	D to A AND A to D CONVERTERS: Introduction, basic DAC techniques -

CONVERTERS	weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D
	converters -parallel comparator type ADC, counter type ADC.

	CMOG LOCICICMOG la ria lavala CMOG AND OD INIVEDT 1 OD						
UNIT V:	CMOS LOGIC:CMOS logic levels, CMOS AND-OR-INVERT and OR-						
CMOS LOGIC,	AND-INVERT gates, implementation of any function using CMOS logic.						
COMBINATIONAL	COMBINATIONAL CIRCUITS USING TTL 74XX ICs: Study of logic						
CIRCUITS USING	gates using 74XX ICs, Four-bit parallel adder (IC 7483), Comparator (IC						
TTL 74XX ICs	7485), Decoder (IC 74138, IC 74154), BCD to						
&	7-segment decoder (IC7447), Encoder (IC74147), Multiplexer (IC74151),						
SEQUENTIAL	Demultiplexer (IC 74154).						
CIRCUITS USING	SEQUENTIAL CIRCUITS USING TTL 74XX ICs: Flip Flops (IC 7474,						
TTL 74XX ICs	IC 7473), Shift Registers, Universal Shift Register (IC 74194), 4- bit						
	asynchronous binary counter (IC 7493).						
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
	1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit,						
	4th edition, New Age International Pvt.Ltd.,NewDelhi,India						
	2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated						
	Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi.						
	3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical						
TEXT BOOKS	technology, S. Chand & Co.						
IEAI DOORS	4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S.						
	Chand & Co, 12th Edition.						
	5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital						
	& Analog), S.Viswanathan Printers & Publishers Private Ltd,						
	Reprint. V.						
	1. Sergio Franco (1997), Design with operational amplifiers and						
	analog integrated circuits, McGraw Hill, New Delhi.						
	2. Gray, Meyer (1995), Analysis and Design of Analog Integrated						
	Circuits, Wiley International, New Delhi.						
REFERENCE	3. Malvino and Leach (2005), Digital Principles and Applications 5th						
BOOKS	Edition, Tata McGraw Hill, New Delhi						
	4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson						
	Education, New Delhi.						
	5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th						
	Reprint (2000)						
	1. https://nptel.ac.in/course.html/digital circuits/						
	2. https://nptel.ac.in/course.html/electronics/operational amplifier/						
	3. https://www.allaboutcircuits.com/textbook/semiconductors/chpt-						
WEB SOURCES	7/field-effect-controlled-thyristors/						
	4. https://www.electrical4u.com/applications-of-op-amp/						
	5. https://www.geeksforgeeks.org/digital-electronics-logic-design-						
	tutorials/						

At the end of the course the student will be able to:

	Learn about the basic concepts for the circuit configuration for the design of linear integrated circuits and develops skill to solve problems	-
	Develop skills to design linear and non-linear applications circuits using Op-Amp and design the active filters circuits.	
CO3	Gain knowledge about PLL, and develop the skills to design the simple circuits using IC 555 timer and can solve problems related to it.	K1, K3
	Learn about various techniques to develop A/D and D/A converters.	K2
CO5	Acquire the knowledge about the CMOS logic, combinational and sequential circuits	K1, K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	•

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	2	2	3	3	3	2
CO2	3	3	3	3	1	3	3	3	2	1
CO3	3	3	3	3	1	3	3	3	2	1
CO4	3	3	3	3	1	3	3	3	2	1
CO5	3	3	3	2	1	1	2	3	2	1

Paper 3 - PRACTICAL - I	I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL I	Core				4	6	75

Pre-Requisites

Knowledge and hands on experience of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes Cornu's Method
- 2. Determination of Viscosity of the given liquid Meyer's disc
- 3. Measurement of Coefficient of linear expansion- Air wedge Method
- 4. B-H loop using Anchor ring.
- 5. Determination of Thickness of the enamel coating on a wire by diffraction
- 6. Determination of Rydberg's Constant Hydrogen Spectrum
- 7. Thickness of air film FP Etalon
- 8. Measurement of Band gap energy- Thermistor
- 9. Determination of Specific charge of an electron Thomson's method.
- 10. Determination of Wavelength, Separation of wavelengths Michelson Interferometer
- 11. GM counter Characteristics and inverse square law.
- 12. Measurement of Conductivity Four probe method.
- 13. Molecular spectra AlO band.
- 14. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 15. Measurements of Standing wave and standing wave co-efficient, Law of Inverse square, Receiver end transmitter behavior, Radiation Pattern - Microwave test bench
- 16. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 17. Construction of relaxation oscillator using UJT
- 18. FET CS amplifier- Frequency response, input impedance, output impedance
- 19. Study of important electrical characteristics of IC741.
- 20. V- I Characteristics of different colours of LED.
- 21. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 22. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.

23. Construction	of Schmidt trigger circuit using IC 741 for a given hysteresis- application as
squarer.	
24. Construction	of square wave Triangular wave generator using IC 741
25. Construction	of a quadrature wave using IC 324
26. Construction	of pulse generator using the IC 741 – application as frequency divider
27. Study of R-S	, clocked R-S and D-Flip flop using NAND gates
28. Study of J-K,	D and T flip flops using IC 7476/7473
29. Arithmetic op	perations using IC 7483- 4-bit binary addition and subtraction.
30. Study of Arit	hmetic logic unit using IC 74181.
	1. Practical Physics, Gupta and Kumar, PragatiPrakasan.
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R.Srinivasan K.R Priolkar, Indian Academy of Sciences.
TEXT BOOKS	3. Electronic Laboratory Primer a design approach, S. Poornachandra,
IEAI DOORS	B.Sasikala, Wheeler Publishing, New Delhi.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
	2. An advanced course in Practical Physics, D.Chattopadhayay, C.R
	Rakshit, New Central Book Agency Pvt. Ltd
REFERENCE	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
BOOKS	Economy Edition.
BOOKS	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
	Sons (Asia) Pvt. Ltd.
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing.

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2							
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1							
CO3	D3 Understand theoretical principles of magnetism through the experiments.								
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3							
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5							
CO6	Conduct experiments on applications of FET and UJT	K4							
CO7	Analyze various parameters related to operational amplifiers.	K4							
CO8	Understand the concepts involved in arithmatic and logical circuits using IC's	K2							
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K1							
CO10	Analyze the applications of counters and registers	K4							
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	•							

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	2	2	2	1	2	3
CO2	2	2	3	3	3	3	3	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	2	2	2	2
CO6	2	2	2	3	3	1	1	1	3	3
CO7	2	2	3	3	3	1	1	1	3	3
CO8	3	3	3	3	3	3	2	2	3	3
CO9	3	3	3	3	3	3	1	1	1	1
CO10	3	3	3	3	3	3	1	1	1	1

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective –I Option 1 – ENERGY PHYSICS I YEAR - FIRST SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ENERGY PHYSICS	ELECTIVE				3	5	75

Pre-Requisites

Knowledge of conventional energy resources

Learning Objectives

- > To learn about various renewable energy sources.
- > To know the ways of effectively utilizing the oceanic energy.
- > To study the method of harnessing wind energy and its advantages.
- > To learn the techniques useful for the conversion of biomass into useful energy.
- ➤ To know about utilization of solar energy.

UNITS	Course Details
UNIT I:	Conventional and non-conventional energy sources and their availability-
INTRODUCTION	prospects of Renewable energy sources- Energy from other sources-
TO ENERGY	Geothermal energy-Hydro power energy- Energy storage- Mechanical,
SOURCES	Electrical and Chemical methods.
UNIT II:	Energy utilization-Energy from tides-Basic principle of tidal power-
ENERGY FROM	utilization of tidal energy – Principle of ocean thermal energy conversion
THE OCEANS	systems.
UNIT III: WIND ENERGY SOURCES	Basic principles of wind energy conversion-power in the wind-forces in the Blades- Wind energy conversion-Advantages and disadvantages of wind energy conversion systems (WECS) - Energy storage-Applications of wind energy.
UNIT IV: ENERGY FROM BIOMASS	Biomass conversion Technologies– wet and dry process– Photosynthesis - Biogas Generation: Introduction–basic process: Aerobic and anaerobic digestion – Advantages of anaerobic digestion–factors affecting bio digestion and generation of gas- bio gas from waste fuel– properties of biogas-utilization of biogas.
UNIT V: SOLAR ENERGY SOURCES	solar cells: Solar cells for direct conversion of solar energy to electric powers–solar cell electrical characteristics– Efficiency–solar water Heater –solar distillation– solar cooking–solar greenhouse – Solar pond and its applications.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism

	1. G.D. Rai, 1996, Non – convention sources of, 4th edition, Khanna
	publishers, New Delhi.
	2. S. Rao and Dr. ParuLekar, Energy technology.
TEXT	3. M.P. Agarwal, Solar Energy, S. Chand and Co., New Delhi (1983).
BOOKS	4. Solar energy, principles of thermal collection and storage by S.P.Sukhatme,
	2 nd edition, Tata McGraw-Hill Publishing Co. Lt., New Delhi (1997).
	5. Energy Technology by S.Rao and Dr.Parulekar.
	1. Renewable energy resources, John Twidell and Tonyweir, Taylor and
	Francis group, London and New York.
	2. Applied solar energy, A.B.MeinelandA.P.Meinal
REFERENCE	3. John Twidell and Tony Weir, Renewable energy resources, Taylor and
	Francis group, London and New York.
BOOKS	4. Renewal Energy Technologies: A Practical Guide for Beginners C.S.
	Solanki-PHI Learning
	5. Introduction to Non-Conventional Energy Resources -Raja et. al., Sci. Tech
	Publications
	1.https://www.open.edu/openlearn/ocw/mod/oucontent/view.php?id=2411&print
	able=1
WEB	2. https://www.nationalgeographic.org/encyclopedia/tidal-energy/
SOURCES	3. https://www.ge.com/renewableenergy/wind-energy/what-is-wind-energy
	4. https://www.reenergyholdings.com/renewable-energy/what-is-biomass/
	5. https://www.acciona.com/renewable-energy/solar-energy/

At the end of the course, the student will be able to:

CO1	To identify various forms of renewable and non-renewable energy sources	K1					
	Understand the principle of utilizing the oceanic energy and apply it for practical applications.	K2					
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	K3					
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K3,K4					
CO5	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2,K5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	3	3
CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	3	3	3

CO2	2	3	3	3	2	2	2	3	3	3
CO3	2	3	3	3	2	2	2	3	3	3
CO4	2	3	3	3	2	2	2	3	3	3
CO5	2	3	3	3	2	2	2	3	3	3

Elective I - Option 2 - ANALYSIS OF CRYSTALI YEAR - FIRST SEMESTERSTRUCTURESI

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ANALYSIS OF CRYSTAL STRUCTURES	ELECTIVE				3	5	75

Pre-Requisites

Fundamentals of crystal structures, symmetry and X-Ray Diffraction techniques

Learning Objectives

- > To teach the concept of crystal structures and symmetry, and diffraction theory
- To provide students with a background to X-ray generation, scattering theory and experimental diffraction from single crystals
- To provide instruction on the methods and basis for determining low-molecular weight crystal structures using X-ray Crystallography
- To give the students a background to the instrumentation used for powder diffraction and structure refinement using Rietveld method
- To teach the different levels of structure exhibited by proteins and nucleic acids and methods used in protein crystallography.

UNITS	Course details
UNIT I: CRYSTAL LATTICE	Unit cell and Bravais lattices - crystal planes and directions - basic symmetry elements operations - translational symmetries - point groups - space groups - equivalent positions - Bragg's law - reciprocal lattice concept -Laue conditions - Ewald and limiting spheres - diffraction symmetry - Laue groups.
UNIT II: DIFFRACTION	X-ray generation, properties - sealed tube, rotating anode, synchrotron radiation - absorption - filters and monochromators Atomic scattering factor - Fourier transformation and structure factor - anomalous dispersion - Laue, rotation/oscillation, moving film methods- interpretation of diffraction patterns - cell parameter determination - systematic absences - space group determination.
	Single crystal diffractometers - geometries - scan modes - scintillation and area detectors -intensity data collection - data reduction - factors
UNIT III: STRUCTURE	affecting X-ray intensities - temperature and scale factor - electron density - phase problem - normalized structure factor - direct method

A NIAT VOIC	fundamentals and precedures. Detterson function and heavy stom					
ANALYSIS	fundamentals and procedures -Patterson function and heavy atom method - structure refinement - least squares method - Fourier and					
	difference Fourier synthesis - R factor - structure interpretation -					
	geometric calculations - conformational studies - computer program					
	packages.					
	Fundamentals of powder diffraction - Debye Scherrer method -					
	diffractometer geometries - use of monochromators and Soller silts -					
	sample preparation and data collection - identification of unknowns -					
UNIT IV:	powder diffraction files (ICDD) - Rietveld refinement fundamentals - profile analysis - peak shapes - whole pattern fitting - structure					
POWDER METHODS	refinement procedures – auto-indexing – structure determination from					
TOWDER METHODS	powder data - new developments. Energy dispersive X-ray analysis –					
	texture studies - crystallite size determination - residual stress					
	analysis - high and low temperature and high pressure crystallography					
	(basics only).					
	Globular and fibrous proteins, nucleic acids - primary, secondary,					
UNIT V:	tertiary and quaternary structures - helical and sheet structures -					
PROTEIN	Ramachandran map and its significance – crystallization methods for					
CRYSTALLOGRAPHY	proteins - factors affecting protein crystallization - heavy atom					
	derivatives – methods used to solve protein structures - anomalous dispersion methods.					
	Expert Lectures, Online Seminars - Webinars on Industrial					
UNIT VI:	Interactions/Visits, Competitive Examinations, Employable and					
PROFESSIONAL						
COMPONENTS Communication Skill Enhancement, Social Accounta Patriotism.						
	 Azaroff, L.V., "Elements of X-Ray Crystallography", Techbooksl, New York, 1992. 					
	 Blundell, T.L. and Johnson, L., "Protein Crystallography", 					
	Academic Press, New York, 1986.					
	3. Cullity, B.D. and Stock, S.R. "Elements of X-ray Diffraction",					
TEVT DOOKS	Pearson, 2014.					
TEXT BOOKS	4. H.L. Bhat, Introduction to Crystal Growth Principles and					
	Practice CRC Press, Taylor & Francis Group, Boca Raton,					
	Florida, 2015.					
	5. B.R. Pamplin, Crystal Growth, Pergamon Press, Oxford, 1975.					
	1. Glusker, J.P. and Trueblood, K.N. Crystal Structure Analysis: A					
	Primer", Oxford University, Press, New York, 1994.					
	2. Ladd, M.F.C. and Palmer, R.A., "Structure Determination by X-					
	ray Crystallography", Plenum Press, New York, 3rd Edition,					
	1993.					
REFERENCE BOOKS	3. Stout, G.H. and Jensen, L."X-ray Structure Determination, A					
	Practical Guide", Macmillan:,New York, 1989.					
	 Woolfson, M.M. "An Introduction to X-ray Crystallography" Cambridge University Press, New York, 1997. 					
	5. Sam Zhang, Lin Ki, Ashok Kumar, Materials Characterization					
	Techniques, CRC Press, Taylor & Francis Group, Boca Raton,					
	Florida, 2009					
	1. https://archive.nptel.ac.in/courses/112/106/112106227/					
WEB SOURCES	2. https://archive.nptel.ac.in/courses/104/108/104108098/					
	3. https://www.digimat.in/nptel/courses/video/102107086/L11.ht					
	<u>ml</u>					

4. https://onlinecourses.nptel.ac.in/noc19_cy35/previewhttps:	://o
nlinecourses.nptel.ac.in/noc19 cy35/preview	<u></u>
5. https://nptel.ac.in/courses/104/104/104104011/	

At the end of the course, the student will be able to:

	Understand crystal symmetry and reciprocal lattice concept for X-ray diffraction	
CO2	Gain a working knowledge of X-ray generation, X-ray photography with Laue, oscillation and moving film methods, and space group determination	K1,K3
CO3	Get an exposure to crystal structure determination using program packages	K1,K4
CO4	Understand the instrumentation used for powder diffraction, data collection, data interpretation, and structure refinement using Rietveld method	K2, K4
CO5	Get an insight into the structural aspects of proteins and nucleic acids, crystallization of proteins and methods to solve protein structures	K5
	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	2	1	2	2	2
CO2	3	3	3	2	2	2	1	2	2	2
CO3	3	3	2	2	2	2	2	2	2	2
CO4	3	2	2	2	2	2	2	2	2	2
CO5	3	2	2	2	2	2	2	2	2	2

Elective II - OPTICS	- Option 1 – ADVANCED	IY	YEAR – FIR	ST S	EM	EST	ER		
								S	
			ry				ts	nr	S.

ADVANCED OPTICS	ELECTIVE			3	5	75
-----------------	----------	--	--	---	---	----

Pre-Requisites
Knowledge of ray properties and wave nature of light
Learning Objectives
> To know the concepts behind polarization and could pursue research work on application
aspects of laser
To impart an extensive understanding of fiber and non-linear optics
> To study the working of different types of LASERS

- To study the working of different types of LASERS
 To differentiate first and second harmonic generation
- Learn the principles of magneto-optic and electro-optic effects and its applications

UNITS	Course Details
UNIT 1: POLARIZATION AND DOUBLE REFRACTION	Classification of polarization – Transverse character of light waves – Polarizer and analyzer – Malu's law – Production of polarized light – Wire grid polarizer and the polaroid – Polarization by reflection – Polarization by double refraction – Polarization by scattering – The phenomenon of double refraction – Normal and oblique incidence – Interference of polarized light: Quarter and half wave plates – Analysis of polarized light – Optical activity
UNIT II: LASERS	Basic principles – Spontaneous and stimulated emissions – Components of the laser – Resonator and lasing action – Types of lasers and its applications – Solid state lasers – Ruby laser – Nd:YAG laser – gas lasers – He-Ne laser – CO ₂ laser – Chemical lasers – HCl laser – Semiconductor laser
UNIT III: FIBER OPTICS	Introduction – Total internal reflection – The optical fiber – Glass fibers – The coherent bundle – The numerical aperture – Attenuation in optical fibers – Single and multi-mode fibers – Pulse dispersion in multimode optical fibers – Fiber-optic sensors: precision displacement sensor – Precision vibration sensor
UNIT IV: NON-LINEAR OPTICS	Basic principles – Harmonic generation – Second harmonic generation – Phase matching – Third harmonic generation – Optical mixing – Parametric generation of light – Self-focusing of light

UNIT V:	Magneto-optical effects - Zeeman effect - Inverse Zeeman effect -										
MAGNETO-	araday effect- Cotton-mouton effect - Kerr magneto-optic effect -										
OPTICS AND	Electro-optical effects – Stark effect – Inverse stark effect – Electric										
ELECTRO-OPTICS	double refraction – Kerr electro-optic effect										
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial										
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and										
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism										
TEXT BOOKS	1. B. B. Laud, 2017, Lasers and Non – Linear Optics, 3 rd Edition, New										

	Age International (P) Ltd.						
	2. AjoyGhatak, 2017, Optics, 6 th Edition, McGraw – Hill Education Pvt.						
	Ltd.						
	3. William T. Silfvast, 1996, Laser Fundamentals Cambridge University						
	Press, New York						
	4. J. Peatros, Physics of Light and Optics, a good (and free!) electron						
	book						
	5. B. Saleh, and M. Teich, Fundamentals of Photonics, Wiley-						
	Interscience,						
	1. F. S. Jenkins and H. E. White, 1981, Fundamentals of Optics, (4th						
	Edition), McGraw – Hill International Edition.						
	2. Dieter Meschede, 2004, Optics, Light and Lasers, Wiley - VCH						
REFERENCE	Varley GmbH.						
BOOKS	3. Lipson, S. G. Lipson and H. Lipson, 2011, Optical Physics, 4 th Edition						
	Cambridge University Press, New Delhi, 2011.						
	4. Y. B. Band, Light and Matter, Wiley and Sons (2006)						
	5. R. Guenther, Modern Optics, Wiley and Sons (1990)						
	1. <u>https://www.youtube.com/watch?v=WgzynezPiyc</u>						
	2. <u>https://www.youtube.com/watch?v=ShQWwobpW60</u>						
WEB SOURCES	3. https://www.ukessays.com/essays/physics/fiber-optics-and-it-						
WED SOURCES	applications.php						
	4. <u>https://www.youtube.com/watch?v=0kEvr4DKGRI</u>						
	5. <u>http://optics.byu.edu/textbook.aspx</u>						

At the end of the course, the student will be able to:

	Discuss the transverse character of light waves and different polarization phenomenon						
	Discriminate all the fundamental processes involved in laser devices and to analyze the design and operation of the devices						
CO3	Demonstrate the basic configuration of a fiber optic – communication system and advantages	K3, K4					
CO4	Identify the properties of nonlinear interactions of light and matter	K4					
CO5	Interpret the group of experiments which depend for their action on an applied magnetics and electric field	K5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	3
C02	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3

CO5	3	3	3	3	3	3	3	3	3	3	
-----	---	---	---	---	---	---	---	---	---	---	--

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	3
CO2	3	3	3	2	3	3	3	3	3	3
CO3	3	3	3	2	3	3	3	3	3	3
CO4	3	3	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

Elective II – Option 2 – NON - LINEAR	I YEAR – FIRST SEMESTER
DYNAMICS	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NONLINEAR DYNAMICS	ELECTIVE				3	5	75

Pre-Requisites									
Basics of Numerical methods and Differential equations, Fundament	tals of linear and nonlinear								
waves, and Basics of communication systems									
Learning Objectives	Learning Objectives								
> To school the students about the analytical and numerical technic	ques of nonlinear dynamics.								
> To make the students understand the concepts of various coherer	nt structures.								
To train the students on bifurcations and onset of chaos.									
\blacktriangleright To educate the students about the theory of chaos and its characteristic cha	erization.								
> To make the students aware of the applications of solitons, chaos	s and fractals.								

➢ To make the students aware of the applications of solitons, chaos and fractals.

UNITS	Course Details				
UNIT I: GENERAL	Linear waves-ordinary differential equations(ODEs)-Partial differential equations(PDEs)- Methods to solve ODEs and PDEs Numerical methods – Linear and Nonlinear oscillators-Nonlinear waves-Qualitative features				
UNIT II: COHERENT STRUCTURESLinear and Nonlinear dispersive waves - Solitons - KdB equation theory of KdB equation -Ubiquitous soliton equations - AKD 					
UNIT III: BIFURCATIONS AND ONSET OF CHAOS	One dimensional flows – Two dimensional flows – Phase plane – Limit cycles – Simple bifurcations – Discrete Dinamical system – Strange attractors – Routes to chaos.				
UNIT V APPLICATIONS	Soliton based communication systems – Solition based computation – Synchronization of chaos – Chaos based communication – Cryptography – Image processing – Stochastic – Resonance – Chaos based computation – Time Series analysis.				

UNIT VI:	Expert	Lectures,	Online	Seminars	-	Webin	ars	on	Indu	strial	
PROFESSIONAL	Interactions/Visits,		Compet	itive Ex	amin	aminations,		nploy	able	and	
COMPONENTS	Commu	Communication Skill Enhancement, Social Accountability and Patriotism									

	1.	M.Lakshmanan and S.Rajasekar, Nonlinear Dynamics: Integrability,
		Chaos and Patterns.Springer, 2003.
	2.	A.Hasegawa and Y.Kodama, Solitons in Optical Communications.
		Oxford Press, 1995.
	3.	Drazin, P. G. Nonlinear Systems. Cambridge University Press,
TEVT DOOVC		2012. ISBN: 9781139172455.
TEXT BOOKS	4.	Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems
		and Chaos. Springer, 2003. ISBN: 9780387001777.
	5.	Strogatz, Steven H. Nonlinear Dynamics and Chaos: With
		Applications to Physics, Biology, Chemistry, and Engineering.
		Westview Press, 2014. ISBN: 9780813349107.
	1.	G.Drazin and R.S.Johnson. Solitons: An Introduction. Cambridge
		University Press, 1989.
	2.	M.Lakshmanan and K.Murali. Chaos in Nonlinear Oscillators.
REFERENCE		World Scientific, 1989.
BOOKS	3.	S.Strogatz. Nonlinear Dynamics and Chaos. Addison Wesley, 1995.
	4.	Hao Bai-Lin, Chaos (World Scientidic, Singapore, 1984).
	5.	Kahn, P. B., Mathematical Methods for Scientists & Engineers
		(Wiley, NY, 1990)
	1.	https://www.digimat.in/nptel/courses/video/108106135/L06.html
	2.	http://digimat.in/nptel/courses/video/115105124/L01.html
WEB SOURCES	3.	https://www.digimat.in/nptel/courses/video/108106135/L01.html
	4.	http://complex.gmu.edu/neural/index.html
	5.	https://cnls.lanl.gov/External/Kac.php

At the end of the course, the student will be able to:

	Gain knowledge about the available analytical and numerical methods to solve various nonlinear systems.	K1, K4							
CO2	Understand the concepts of different types of coherent structures and their importance in science and technology.	K2							
	Learn about simple and complex bifurcations and the routes to chaos	K1, K2							
	Acquire knowledge about various oscillators, characterization of chaos and fractals.	K1							
	To analyze and evaluate the applications of solutions in telecommunication, applications of chaos in cryptography, computations and that of fractals.	K3, K5							
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;								

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2

CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	1	2	2	2	2
CO2	3	2	2	2	2	2	2	2	2	2
CO3	2	2	2	2	2	2	2	2	2	2
CO4	2	2	2	2	2	1	2	2	2	2
CO5	1	2	2	2	2	2	2	2	2	2

Paper 4 - STATISTICAL MECHANICS	I YEAR - SECOND SEMESTER	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	STATISTICAL MECHANICS	Core				5	6	75

Pre-Requisites									
Knowledge of Laws of thermodynamics, phase transition, entropy, ensembles, partition function									
classical and quantum statistics, thermal equilibrium, Brownian motion									
Learning Objectives									

- To acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
- > To identify the relationship between statistic and thermodynamic quantities
- > To comprehend the concept of partition function, canonical and grand canonical ensembles
- To grasp the fundamental knowledge about the three types of statistics
- To get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

UNITS	Course Details
UNIT I: PHASE TRANSITIONS	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition
UNIT II: STATISTICAL MECHANICS AND THERMODYNAMICS	Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble.

UNIT III: CANONICAL A	ND Trainstaries and density of states. Liouville's theorem Cononical
	5
GRAND	and grand canonical ensembles - Partition function - Calculation of
CANONICAI	
ENSEMBLES	
UNIT IV:	Density matrix - Statistics of ensembles - Statistics of indistinguishable
CLASSICAL A	1
QUANTUM	Fermi gas – Degeneracy - Bose-Einstein statistics - Plank radiation
STATISTICS	formula - Ideal Bose gas - Bose-Einstein condensation.
	Cluster expansion for a classical gas. Virial equation of state. Calculation
UNIT V:	Cluster expansion for a classical gas - Virial equation of state – Calculation
REAL GAS,	of the first Virial coefficient in the cluster expansion - Ising model - Mean-
ISING MODEL	field theories of the Ising model in three, two and one dimensions - Exact
AND	solutions in onedimension. Correlation of space-time dependent fluctuations
FLUCTUATIO	- Fluctuations and transport phenomena - Brownian motion - Langevin's
NS	theory.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,
PROFESSIONA	Competitive Examinations, Employable and Communication Skill
L	Enhancement, Social Accountability and Patriotism
COMPONENTS	
TEXT BOOKS	 S. K. Sinha, 1990, Statistical <i>Mechanics</i>, Tata McGraw Hill, New Delhi. B. K. Agarwal and M. Eisner, 1998, <i>Statistical Mechanics</i>, Second Edition New Age International, New Delhi. J. K. Bhattacharjee, 1996, <i>Statistical Mechanics</i>: An Introductory Text, Allied Publication, New Delhi. F. Reif, 1965, <i>Fundamentals of Statistical and Thermal Physics</i>, McGraw -Hill, New York. M. K. Zemansky, 1968, <i>Heat and Thermodynamics</i>, 5th edition, McGraw-Hill New York.
	1. R. K. Pathria, 1996, <i>Statistical Mechanics</i> , 2 nd edition, Butter
DEFEDENCE	 WorthHeinemann, New Delhi. 2. L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i>, Pergamon Press, Oxford.
REFERENCE BOOKS	
DUUKS	3. K. Huang, 2002, <i>Statistical Mechanics</i> , Taylor and Francis, London
	4. W. Greiner, L. Neiseand H.Stoecker, <i>Thermodynamics and Statistical</i>
	Mechanics, Springer Verlang, New York.
	5. A. B. Gupta, H. Roy, 2002, <i>Thermal Physics</i> , Books and Allied, Kolkata.
	1. <u>https://byjus.com/chemistry/third-law-of-thermodynamics/</u>
	2. <u>https://web.stanford.edu/~peastman/statmech/thermodynamics.html</u>
WEB SOURCES	3. <u>https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodyna</u>
	mics
	4. <u>https://en.wikipedia.org/wiki/Grand_canonical_ensemble</u>
	5. <u>https://en.wikipedia.org/wiki/Ising_model</u>

At the end of the course the student will be able to:

CO1 To examine and elaborate the effect of changes in thermodynamic quant the states of matter during phase transition	ities on K5							
CO2 To analyze the macroscopic properties such as pressure, volume, temp	erature.							
specific heat, elastic moduli etc. using microscopic properties like interme								
forces, chemical bonding, atomicity etc.	K4							
Describe the peculiar behaviour of the entropy by mixing two gases								
Justify the connection between statistics and thermodynamic quantities								
CO3Differentiate between canonical and grand canonical ensembles and to interpret								
the relation between thermodynamical quantities and partition function								
CO4 To recall and apply the different statistical concepts to analyze the behavior	viour of							
ideal Fermi gas and ideal Bose gas and also to compare and distinguish b	etween K5							
the three types of statistics.	IX.J							
CO5 To discuss and examine the thermodynamical behaviour of gases	under K3							
fluctuation and also using Ising model	IX.J							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluat	e							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	1	1	3
CO2	3	3	3	1	1	2	3	1	1	3
CO3	3	3	3	1	1	2	3	2	1	3
CO4	3	3	3	1	1	2	3	2	1	3
CO5	3	3	3	1	1	2	3	1	1	3

Paper 5 - QUANTUM MECHANICS

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	QUANTUM MECHANICS	Core				5	6	75

Pre-Requisites

Knowledge of Newton's laws of motion, Schrodinger's equation, integration, differentiation.

Learning Objectives

- To develop the physical principles and the mathematical background important to quantum mechanical descriptions.
- > To describe the propagation of a particle in a simple, one-dimensional potential.
- To formulate and solve the Schrodinger's equation to obtain eigenvectors and energies for particle in a three-dimensional potential.
- To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetries in nature
- To discuss the Approximation methods like perturbation theory, Variational and WKB methods for solving the Schrödinger equation.

UNITS	Course Details
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation – Time independent Schrodinger equation – Stationary states – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation
UNIT II:ONE	
DIMENSIONAL	Square – well potential with rigid walls – Square well potential with finite
AND THREE-	walls - Square potential barrier - Alpha emission - Bloch waves in a
DIMENSIONAL	periodic potential - Kronig-penny square - well periodic potential - Linear
ENERGY EIGEN	harmonic oscillator: Operator method – System of two interacting particles –
VALUE	Hydrogen atom – Rigid rotator
PROBLEMS	
	Dirac notation - Equations of motions - Schrodinger representation -
UNIT III:	Heisenberg representation - Interaction representation - Coordinate
GENERAL	representation - Momentum representation - Symmetries and conservation
FORMALISM	laws – Unitary transformation – Parity and time reversal

	Time independent perturbation theory for non-degenerate energy levels –					
UNIT IV:	Degenerate energy levels – Stark effect in Hydrogen atom – Ground and					
APPROXIMATIO	excited state – Variation method – Helium atom – WKB approximation –					
N METHODS	Connection formulae (no derivation) – WKB quantization – Application to					
	simple harmonic oscillator.					
UNIT V:	Eigen value spectrum of general angular momentum – Matrix representation					
ANGULAR	– Spin angular momentum – Addition of angular momenta – CG					
MOMENTUM	Coefficients – Symmetry and anti – symmetry of wave functions –					
	Construction of wave-functions and Pauli's exclusion principle.					
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial					
	1					
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and					
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism					
	1. P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2 nd edition(37th Reprint), Tata McGraw-Hill, New Delhi,					
	2010.					
	2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of					
	India, New Delhi, 2009.					
	3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition,					
TEXT BOOKS	Pearson, 2011.					
	4. SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1 st					
	Edition, S.Chand& Co., New Delhi, 1982.					
	5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and					
	Applications, 4 th Edition, Macmillan, India, 1984.1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and					
	Sons, New York, 1970.					
	2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern					
	Ltd, New Delhi, 1985.					
REFERENCE	3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition,					
BOOKS	Pergomon Press, Oxford, 1976.					
	4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata,					
	1999.					
	5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science					
	International Ltd, Oxford , 2011. 1. http://research.chem.psu.edu/lxjgroup/download_files/chem565-					
	c7.pdf					
	2. http://www.feynmanlectures.caltech.edu/III_20.html					
WEB SOURCES	3. <u>http://web.mit.edu/8.05/handouts/jaffe1.pdf</u>					
	4. https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/					
	Lecture_ 1.pdf					
	5. <u>https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf</u>					

At the end of the course the student will be able to:

CO1	Demonstrates	а	clear	understanding	of	the	basic	postulates	of	.		
	mechanics which serve to formalize the rules of quantum											
	Mechanics											

CO2 Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems								
CO3 Can discuss the various representations, space time symmetries and formulations of time evolution	^l K1							
CO4 Can formulate and analyze the approximation methods for various quantum mechanical problems								
CO5 To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.	^F K3, K4							
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate								

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	2	3	2	2	3
CO2	3	3	3	3	3	S	3	2	2	3
CO3	2	3	3	2	3	2	3	2	2	3
CO4	3	3	3	3	3	2	3	3	2	3
CO5	3	3	3	2	3	S	3	3	2	3

Paper 6 - PRACTICAL II

I YEAR - SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL II	Core				4	6	75

Pre-Requisites

Knowledge and handling of basic general and electronics experiments of Physics

Learning Objectives

- To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations.
- > To calculate the thermodynamic quantities and physical properties of materials.
- > To analyze the optical and electrical properties of materials.
- > To observe the applications of FET and UJT.
- > To study the different applications of operational amplifier circuits.
- > To learn about Combinational Logic Circuits and Sequential Logic Circuits

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Young's modulus and Poisson's ratio by Elliptical fringes Cornu's Method
- 2. Determination of Stefan's constant of radiation from a hot body
- 3. Measurement of Susceptibility of liquid Quincke's method
- 4. B-H curve using CRO
- 5. Thickness of LG Plate
- 6. Arc spectrum: Copper
- 7. Determination of e/m Millikan's method
- 8. Miscibility measurements using ultrasonic diffraction method
- 9. Determination of Thickness of thin film. Michelson Interferometer
- 10. Iodine absorption spectra
- 11. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 12. Measurement of Dielectricity Microwave test bench
- 13. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 14. Interpretation of vibrational spectra of a given material
- 15. Determination of I-V Characteristics and efficiency of solar cell
- 16. GM counter Absorption coefficient Maximum range of β rays
- 17. IC 7490 as scalar and seven segment display using IC7447
- 18. Solving simultaneous equations IC 741 / IC LM324
- 19. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 20. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 21. Construction of second order butterworth multiple feedback narrow band pass filter
- 22. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 23. Construction of Schmidt trigger circuit using IC555 for a given hysteresis Application as squarer

24. Construction of pulse generator using the IC 555 – Application as frequency divider											
25. BCD to Exc	cess- 3 and Excess 3 to BCD code conversion										
26. Study of bin	26. Study of binary up / down counters - IC 7476 / IC7473										
27. Shift register and Ring counter and Johnson counter- IC 7476/IC 7474											
	1. Practical Physics, Gupta and Kumar, PragatiPrakasan										
	2. Kit Developed for doing experiments in Physics- Instruction manual,										
	R.Srinivasan K.R Priolkar, Indian Academy of Sciences										
TEXT BOOKS	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern										
	Economy Edition.										
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing										
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition										
	1. An advanced course in Practical Physics, D.Chattopadhayay,										
	C.RRakshit, New Central Book Agency Pvt. Ltd										
	2. Advanced Practical Physics, S.P Singh, PragatiPrakasan										
DEFEDENCE	3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &										
REFERENCE	Sons (Asia) Pvt.ltd										
BOOKS	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya										
	Publishing										
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,										
	B.Sasikala, Wheeler Publishing, New Delhi										

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2								
CO2	Acquire knowledge of thermal behaviour of the materials	K1								
CO3	Understand theoretical principles of magnetism through the experiments.	K2								
CO4	Acquire knowledge about arc spectrum and applications of laser	K1								
CO5	Improve the analytical and observation ability in Physics Experiments	K4								
CO6	Conduct experiments on applications of FET and UJT	K5								
CO7	Analyze various parameters related to operational amplifiers	K4								
CO8	Understand the concepts involved in arithmetic and logical circuits using IC's	K2								
CO9	Acquire knowledge about Combinational Logic Circuits and Sequential Logic Circuits	K3								
CO10	Analyze the applications of counters and registers	K4								
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate									

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	S	S	2	2	2	3	3

CO2	2	2	S	S	S	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	S	S	2	2	2	3	3
CO7	2	2	S	S	S	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective III – Option 1- PLASMA PHYSICS I YEAR – SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
-----------------	--------------	----------	---	---	---	---------	-------------	-------

PLASMA PHYSICS ELE	ECTIVE		3	4	75
--------------------	--------	--	---	---	----

Pre-Requisites							
Fundamentals of Electricity and Magnetism, Electromagnetic theory, Maxwell's equation,							
Basic knowledge of electrical and electronics instrumentation.							
Learning Objectives							
➤ To explore the plasma universe by means of in-site and ground-based observations.							
➢ To understand the model plasma phenomena in the universe.							
To evaluate the above include and experience in the second environment							

> To explore the physical processes which occur in the space environment.	\triangleright	To explore the physica	processes which occur in	the space environment.
---	------------------	------------------------	--------------------------	------------------------

UNITS	Course Details
UNIT I:	Kinetic pressure in a partially ionized - mean free path and collision cross
FUNDAMENTAL	section - Mobility of charged particles - Effect of magnetic field on the
CONCEPTS OF	mobility of ions and electrons-Thermal conductivity- Effect of magnetic
PLASMA	field. Debye shielding distance - Optical properties of plasma.
UNIT II: MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD	Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field - Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - motion of an electron in a time varying electric field- Magneto- hydrodynamics - Magneto-hydrodynamic equations – Condition for magneto hydrodynamic behavior.
UNIT III: PLASMA OSCILLATIONS AND WAVES	Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation - Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam.
UNIT IV: PLASMA DIAGNOSTICS TECHNIQUES	Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic methodlaser as a tool for plasma diagnostics-X-ray diagnostics of plasma - acoustic method - conclusion.
UNIT V: APPLICATIONS OF PLASMA PHYSICS	Magneto hydrodynamic Generator - Basic theory - Principle of Working- Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism

	1. Plasma Physics- Plasma State of Matter - S. N.Sen,								
	PragatiPrakashan, Meerut.								
	2. Introduction to Plasma Physics-M. Uman								
	3. Krall, N. A., and A. W. Trivelpiece. Principles of Plasma								
TEXT BOOKS	Physics. Berkeley, CA: San Francisco Press, 1986. ISBN:								
IEAI DOURS	9780911302585.Tanenbaum, B. S. Plasma Physics. New								
	York, NY: McGraw-Hill, 1967. ISBN: 9780070628120.								
	4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma								
	Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN:								

	9780750301831.						
	5. Hutchinson, I. H. Principles of Plasma Diagnostics.						
	Cambridge, UK: Cambridge University Press, 2005. ISBN:						
	9780521675741.						
	1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New						
	York, NY: Springer, 1984. ISBN: 9780306413322.						
	2. Introduction to Plasma Theory-D.R. Nicholson						
	3. Shohet, J. L. The Plasma State. San Diego, CA: Academic						
REFERENCE	Press Inc., 1971. ISBN: 9780126405507.						
BOOKS	4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of						
	Plasma Physics. Boulder, CO: Westview Press, 2004. ISBN:						
	9780813342139.						
	5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic						
	Techniques. San Diego, CA: Academic Press, 1965						
	1. https://fusedweb.llnl.gov/Glossary/glossary.html						
	2. <u>http://farside.ph.utexas.edu/teaching/plasma/lectures1/index.html</u>						
WEB SOURCES	3. <u>http://www.plasmas.org/</u>						
	4. <u>http://www.phy6.org/Education/whplasma.html</u>						
	5. <u>http://www.plasmas.org/resources.htm</u>						

At the end of the course, the student will be able to:

C01	Understand the collision, cross section of charged particles and to able to correlate the magnetic effect of ion and electrons in plasma state.	K1,	K2				
	Understand the plasma and learn the magneto-hydrodynamics concepts applied to	K2					
	plasma.						
CO3	Explore the oscillations and waves of charged particles and thereby apply the	K1.	КЗ				
	Maxwell's equation to quantitative analysis of plasma.	,	110				
CO4		K2,					
CO5	Learn the possible applications of plasma by incorporating various electrical and	KA					
	electronic instruments.	114					
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3
CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	2	1	2	3	3
CO3	3	3	2	2	1	2	1	3	3	3

CO4	3	3	3	2	1	2	1	3	3	3
CO5	3	3	3	2	1	2	1	3	3	3

Elective III – Option 2 – ADVANCED MATHEMATICAL PHYSICS

I YEAR – SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	ADVANCED MATHEMATICAL PHYSICS	ELECTIVE				3	4	75

Pre-Requisites				
Good knowledge in basic mathematics				
Learning Objectives				
> To educate and involve students in the higher level of mathematics and mathematica				
methods relevant and applicable to Physics.				

UNITS	Course Details
UNIT I: DISCRETE GROUPS	Definition of a group, subgroup, class, Lagrange's theorem, invariant subgroup, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.
UNIT II: CONTINUOUS GROUPS	Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.
UNIT III: SPECIAL UNITARY GROUPS	Definition of unitary, unimodular groups SU(2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3)-Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root diagram for SU(3). Weights and their properties, weight diagrams for the irreducible representations 3.3^* -, $6,6~8$, $10~and~10~of~SU(3)$. Direct product of two SU(3) representations, Young tableaux method of decomposition of products of IR's illustrations with the representations. SU(3) symmetry in elementary particle physics, quantum numbers of hadrons and SU(2) and SU(3) classification of hadrons.
UNIT IV: TENSORS	Cartesian vectors and tensors illustration with moment of inertia, conductivity, dielectric tensors. Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition,

antisymmetric tensors.

subtraction, direct product of tensors, quotient theorem, symmetric and

UNIT V: TENSOR CALCULUS	Parallel transport, covariant derivative, affine connection. Metric tensor. Expression for Christoffel symbols in terms of and its derivatives (assuming D $g = 0$. Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.
-------------------------------	--

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL	nteractions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							
TEXT BOOKS	 A.W.Joshi, Group Theory for Physicists D.B.Lichtenberg, Unitary Symmetry and Elementary Particles E.Butkov, Mathematical Physics J.V.Narlikar, General Relativity & Cosmology R. Geroch, Mathematical Physics, The University of Chicago press (1985). 							
REFERENCE BOOKS	 M.Hamermesh <i>Group Theory</i> M.E.Rose: Elementary Theory of Angular Momentum Georgi : Lie Groups for Physicists E.A.Lord: Tensors, Relativity & Cosmology P. Szekeres, A course in modern mathematical physics: Groups, Hilbert spaces and differential geometry, Cambridge University Press. 							
WEB SOURCES	 <u>https://vdoc.pub/documents/unitary-symmetry-and-elementary-particles-c4qsfejthkc0</u> <u>https://physics.iith.ac.in/HEP_Physics/slides/poplawskitalk.pdf</u> 							

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	CO1 Gained knowledge of both discrete and continuous groups				
CO2 Apply various important theorems in group theory					
CO3	Construct group multiplication table, character table relevant to important	tK5			
	branches of physics.	113			
CO4	Equipped to solve problems in tensors	K4,	K5		
CO5 Developed skills to apply group theory and tensors to peruse research					
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	1	1	2	1	2	3	3
CO2	3	3	2	1	1	1	1	2	3	2
CO3	3	3	2	1	2	2	1	2	3	2
CO4	3	3	2	2	1	2	1	2	3	2
CO5	3	3	2	2	2	1	1	2	3	2

Elective –IV Option 1- SOLAR ENERGY UTILIZATION

I YEAR – SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLAR ENERGY UTILIZATION	ELECTIVE				3	4	75

Pre-Requisites

Basic knowledge of heat energy, way of transfer of heat, solar energy, materials types

Learning Objectives

- > To impart fundamental aspects of solar energy utilization.
- > To give adequate exposure to solar energy related industries
- > To harness entrepreneurship skills
- > To understand the different types of solar cells and channelizing them to the different sectors of society
- > To develop an industrialist mindset by utilizing renewable source of energy

UNITS	Course Details					
UNIT I:	Conduction, Convection and Radiation - Solar Radiation at the					
HEAT TRANSFER &	earth's surface - Determination of solar time - Solar energy					
RADIATION ANALYSIS	measuring instruments.					
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.					
UNIT III: SOLAR HEATERS	Types of solar water heater - Solar heating system – Collectors and storage tanks – Solar ponds – Solar cooling systems.					
UNIT IV: SOLAR ENERGY CONVERSION	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process-texturization, diffusion, Antireflective coatings, metallization.					
UNIT V: NANOMATERIALS IN FUEL CELL APPLICATIONS	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis - presentation					
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial					
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and					
COMPONENTS	Communication Skill Enhancement, Social Accountability and					

Patriotism

TEXT	1. Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987.							
BOOKS	2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and							
	Applications", Mc Graw-Hill, 2010.							
	3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems",							
	Academic Press, London, 2009							
	4. Tiwari G.N, "Solar Energy – Fundamentals Design, Modelling and							
	applications, Narosa Publishing House, New Delhi, 2002							
	5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd.,							
	New Delhi, 1997.							
REFERENCE	1. Energy – An Introduction to Physics – R.H.Romer, W.H.Freeman.(1976)							
BOOKS	2. Solar energy thermal processes – John A.Drife and William. (1974)							
	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005							
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes,							
	4th Edition, john Wiley and Sons, 2013							
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley							
	and Sons,2007.							
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c63556							
SOURCES	f9a4fb							
	2. https://books.google.vg/books?id=l-							
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read							
	3. www.nptel.ac.in/courses/112105051							
	4. <u>www.freevideolectures.com</u>							
	5. <u>http://www.e-booksdirectory.com</u>							

COURSE OUTCOMES:

PSO1

PSO2

PSO3

PSO4

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1
CO2	Equipped to take up related job by gaining industry exposure	K3
CO3	Develop entrepreneurial skills	K5
CO4	Skilled to approach the needy society with different types of solar cells	K4
CO5	Gained industrialist mindset by utilizing renewable source of energy	K2, K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	•

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

3 3 2 2 2 3 2 2 2 2 3 2 2 3	2
	2
2 2 2 3 3 3	2
3 2 3 2 3 3	2
2 3 3 3 3 3	3
3 2 3 2 3 3 2 3 3 3 3 3 3	_

PSO5

PSO6

PSO7

PSO8

PSO9

PSO10

CO1	3	2	3	3	3	2	2	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	2	2	2	3	2	3	2	3	3	2
CO5	2	2	3	2	3	3	3	3	3	3

Elective – IV Option 2	I YEAR – SECOND SEMESTER
CHARACTERIZATON OF MATERIALS	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CHARACTERIZATON OF MATERIALS	ELECTIVE				3	4	75

Pre-Requisites
Fundamentals of Heat and Thermodynamics, Basics of Optical systems, Microscopic systems,
Electrical measurements and Fundamentals of Spectroscopy.
Learning Objectives
To make the students learn some important thermal analysis techniques namely TGA, DTA, DSC and TMA.
To make the students understand the theory of image formation in an optical microscope and to introduce other specialized microscopic techniques.
To make the students learn and understand the principle of working of electron microscopes and scanning probe microscopes.

- To make the students understand some important electrical and optical characterization techniques for semiconducting materials.
- To introduce the students the basics of x-ray diffraction techniques and some important spectroscopic techniques.

UNITS	Course details
UNIT I THERMAL ANALYSIS	Introduction – thermogravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermomechanical parameters.
UNIT II MICROSCOPIC METHODS	Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy - phase contrast microscopy – differential interference contrast microscopy - fluorescence microscopy - confocal microscopy - digital holographic microscopy - oil immersion objectives - quantitative metallography - image analyzer.
UNIT III ELECTRON	SEM, EDAX, EPMA, TEM: working principle and Instrumentation -

MICROSCOPY AND	sample preparation –Data collection, processing and analysis- Scanning
SCANNING PROBE	tunnelingmicroscopy (STEM) - Atomic force microscopy (AFM) -
MICROSCOPY	Scanning new field optical microscopy.

UNIT IV ELECTRICAL METHODS AND OPTICAL CHARACTERISATION	Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations. Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.
UNIT V X-RAY AND SPECTROSCOPIC METHODS	Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS- proton induced X-ray Emission spectroscopy (PIXE) –Rutherford Back Scattering (RBS) analysis-application - Powder diffraction - Powder diffractometer -interpretation of diffraction patterns - indexing - phase identification - residual stress analysis - Particle size, texture studies - X-ray fluorescence spectroscopy - uses.
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

TEXT BOOKS	 R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990. J. A. Belk. Electron microscopy and microanalysis of crystalline material Applied Science Publishers, London, 1979. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991 D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang 				
	CRC Press,(2008).1. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, (2001).				
REFERENCE BOOKS	 Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001). Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009). Volumes 49 – 51, (2009). Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986). 				
	5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, ButterworthHeinemann, (1993)				
WEB	1. https://cac.annauniv.edu/uddetails/udpg_2015/77.%20Mat%20Sci(AC).pdf				
SOURCES	2. http://www.digimat.in/nptel/courses/video/113106034/L11.html				
	3. <u>https://nptel.ac.in/courses/104106122</u>				
	 4. <u>https://nptel.ac.in/courses/118104008</u> 5. <u>https://www.sciencedirect.com/journal/materials-characterization</u> 				
	5. https://www.setenceuncet.com/journal/materials-enaracterization				

Г

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1 Describe the TGA, DTA, DSC and TMA thermal analysis techniques and make interpretation of the results.	K1, K3
CO2 The concept of image formation in Optical microscope, developments in other specialized microscopes and their applications.	K2
CO3 The working principle and operation of SEM, TEM, STM and AFM.	K2, K3
Hectrochemical Photoluminescence and electroluminescence experimental	K3, K4
CO5 The theory and experimental procedure for x- ray diffraction and some important spectroscopic techniques and their applications.	K4,K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	2	2	2	2	2	3
CO2	3	3	3	2	2	2	2	2	2	2
CO3	3	3	2	2	2	3	2	2	2	2
CO4	2	2	2	3	2	3	2	2	2	2
CO5	2	2	2	2	2	2	3	2	2	2

I YEAR – SECOND SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MEDICAL PHYSICS	ELECTIVE				2	4	75

Pre-Requisites							
Fundamentals of physiological concepts, Basics of instruments principle,							
Learning Objectives							
To understand the major applications of Physics to Medicine							
> To study the aid of different medical devices such as X-ray machines, gamma camera,							
accelerator and nuclear magnetic resonance.							

- To outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
- > To introduce the ideas of Radiography.
- > To form a good base for further studies like research.

UNITS	Course Details
UNIT I: X-RAYS AND TRANSDUCERS	Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X- Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer
UNIT II: BLOOD PRESSURE MEASUREMENTS	Introduction $-\Box$ sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electroneurography (ENG) – Basic principles of magnetic resonance imaging (MRI).
UNIT III: RADIATION PHYSICS	Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors– Condenser Chambers – Geiger Counter – Scintillation Counter
UNIT IV: MEDICAL IMAGING PHYSICS	Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display– Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNITV:	Principles of Radiation Protection – Protective Materials – Radiation Effects –									
RADIATION	omatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring									
PROTECTION	evices – TLD Film Badge – Pocket Dosimeter									
UNIT VI:	spert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits,									
PROFESSIONAL	ompetitive Examinations, Employable and Communication Skill									
COMPONENTS	nhancement, Social Accountability and Patriotism									
	I. Dr.K.Thayalan , Basic Radiological Physics, Jayapee Brothers Medic									
	Publishing Pvt. Ltd. New Delhi, 2003.									
	2. Curry, Dowdey and Murry, Christensen's Physics of Diagnostic									
	Radiology: -LippincotWilliams and Wilkins, 1990.									
	3. FM Khan, <i>Physics of Radiation Therapy</i> , William and Wilkins, 3rd ed,									
TEXT BOOKS	2003.									
	4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed,									
	Elsevier Science, 2014.									
	5. R.S. Khandpur, Hand Book of Biomedical Instrumentations, 1st ed, TMG,									
	New Delhi, 2005.									
	1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed,									
	Springer International Publishing, 2017.									
REFERENCE	2. Daniel Jirák, FrantišekVítek, <i>Basics of Medical Physics</i> , 1st ed, Charles									
BOOKS	University, Karolinum Press, 2018									
DOORD	•									
	3. Anders Brahme, <i>Comprehensive Biomedical Physics</i> , Volume 1, 1st ed,									
	Elsevier Science, 2014.									

	4.	K. Venkata Ram, Bio-Medical Electronics and Instrumentation, 1st ed,
		Galgotia Publications, New Delhi, 2001.
	5.	John R. Cameron and James G. Skofronick, 2009, Medical Physics, John
		Wiley Interscience Publication, Canada, 2nd edition.
	1.	https:nptel.ac.in/courses/108/103/108103157/
	2.	https://www.studocu.com/en/course/university-of-technology-
		sydney/medical-devices-and-diagnostics/225692
WEB SOURCES	3.	https://www.technicalsymposium.com/alllecturenotes_biomed.html
	4.	https://lecturenotes.in/notes/17929-note-for-biomedical-instrumentation-
		bi-by-deepraj-adhikary/78
	5.	https://www.modulight.com/applications-medical/

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Learn the fundamentals, production and applications of X-rays.	K1			
CON	Understand the basics of blood pressure measurements. Learn about	К2			
	Understand the basics of blood pressure measurements. Learn about sphygmomanometer, EGC, ENG and basic principles of MRI.	K2			
CO3	Apply knowledge on Radiation Physics	K3			
CO4	Analyze Radiological imaging and filters	K4			
CO5	Assess the principles of radiation protection	K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	1	2	3	3	1	3
CO2	3	3	3	2	1	2	3	3	1	3
CO3	3	3	3	2	1	2	3	3	1	3
CO4	3	3	3	2	1	2	3	3	1	3
CO5	3	3	3	1	1	2	3	3	1	3

Paper-7 - CLASSICAL MECHANICS AND RELATIVITY	II YEAR – THIRD SEMESTER
--	---------------------------------

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	CLASSICAL MECHANICS AND RELATIVITY	Core				5	6	75

Pre-Requisites

Knowledge of fundamentals of mechanics, Foundation in mathematical methods.

Learning Objectives

- > To understand fundamentals of classical mechanics.
- > To understand Lagrangian formulation of mechanics and apply it to solve equation of motion.
- > To understand Hamiltonian formulation of mechanics and apply it to solve equation of motion.
- > To discuss the theory of small oscillations of a system.
- > To learn the relativistic formulation of mechanics of a system.

UNITS	Course Details
UNIT I: PRINCIPLES OF CLASSICAL MECHANICS	Mechanics of a single particle – mechanics of a system of particles – conservation laws for a system of particles – constraints – holonomic & non-holonomic constraints – generalized coordinates – configuration space – transformation equations – principle of virtual work.
UNIT II: LAGRANGIAN FORMULATION	D'Alembert's principle – Lagrangian equations of motion for conservative systems – applications: (i) simple pendulum (ii) Atwood's machine (iii) projectile motion.
UNIT III: HAMILTONIAN FORMULATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.
UNIT IV: SMALL OSCILLATIONS	Formulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.
UNIT V: RELATIVITY	Inertial and non-inertial frames – Lorentz transformation equations – length contraction and time dilation – relativistic addition of velocities – Einstein's mass-energy relation – Minkowski's space – four vectors – position, velocity, momentum, acceleration and force in for vector notation and their transformations
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 H. Goldstein, 2002, <i>Classical Mechanics</i>, 3rd Edition, Pearson Edu. J. C. Upadhyaya, <i>Classical Mechanics</i>, HimalayaPublshing.

		Co.New Delhi.
	3.	R. Resnick, 1968, Introduction to Special Theory of Relativity,
		Wiley Eastern, New Delhi.
	4.	R. G. Takwala and P.S. Puranik, Introduction to Classical
		Mechanics – Tata – McGraw Hill, New Delhi, 1980.
	5.	N. C. Rana and P.S. Joag, Classical Mechanics - Tata McGraw
		Hill, 2001
	1.	K. R. Symon, 1971, Mechanics, Addison Wesley, London.
	2.	S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
REFERENCE BOOKS		Kolkata.
REFERENCE BOOKS	3.	Gupta and Kumar, Classical Mechanics, KedarNath.
	4.	T.W.B. Kibble, Classical Mechanics, ELBS.
	5.	Greenwood, Classical Dynamics, PHI, New Delhi.
	1.	http://poincare.matf.bg.ac.rs/~zarkom/Book_Mechanics_Goldst
		ein_Classical_Mechanics_optimized.pdf
	2.	https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
WEB SOURCES		editionpdf-pdf-free.html
WEB SOURCES	3.	https://nptel.ac.in/courses/122/106/122106027/
	4.	https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-
		iii-fall-2014/lecture-notes/
	5.	https://www.britannica.com/science/relativistic-mechanics

COURSE OUTCOMES:

At the end of the course the student will be able to:

 CO2 Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems. CO3 Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems. CO4 Analyze the small oscillations in systems and determine their normal modes of oscillations. 	K2
equations of motion of physical systems.CO4Analyze the small oscillations in systems and determine their normal modes of	NJ
CO4 Analyze the small oscillations in systems and determine their normal modes of oscillations.	·
	K4, K5
CO5 Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	3	2	2
CO2	2	3	3	3	2	2	2	3	2	2
CO3	2	3	3	3	2	2	2	3	2	2
CO4	2	3	3	3	2	2	2	3	2	2

CO5	2	3	3	3	2	2	2	3	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	3	3	3	3	2	3	2
CO2	2	3	3	3	3	3	3	2	2	2
CO3	3	3	3	2	2	3	3	2	3	2
CO4	3	3	3	3	2	3	3	2	2	2
CO5	3	2	3	3	2	3	3	2	2	2

Paper 8 - NUCLEAR AND PARTICLE PHYSICS II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUCLEAR AND PARTICLE PHYSICS	Core				5	6	75

Pre-Requisites					
Knowledge of basic structure of atom and nucleus.					
Learning Objectives					
Introduces students to the different models of the nucleus in a chronological order					
Imparts an in-depth knowledge on the nuclear force, experiments to study it and the types nuclear reactions and their principles	s of				

- Provides students with details of nuclear decay with relevant theories
- > Exposes students to the Standard Model of Elementary Particles and Higgs boson

UNITS	Course Details
UNIT I: NUCLEAR MODELS	Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling – magic numbers – angular momenta and parity of ground states– electric Quadrapole moment - Bohr model – rotational and vibrational bands.
UNIT II: NUCLEAR FORCES	Nucleon – nucleon interaction – Tensor forces – properties of nuclear forces – ground state of deuteron – Exchange Forces - Meson theory of nuclear forces – Yukawa potential – nucleon-nucleon scattering – effective range theory – spin dependence of nuclear forces - charge independence and charge symmetry – isospin formalism.
UNIT III:	Kinds of nuclear reactions – Reaction kinematics – Q-value – Partial wave analysis of scattering and reaction cross section – scattering length

NUCLEAR	- Compound nuclear reactions - Reciprocity theorem - Resonances -
REACTIONS	Breit Wigner one level formula – Direct reactions - Nuclear Chain
	reaction – four factor formula.
UNIT IV:	Beta decay - Continuous Beta spectrum - Fermi theory of beta decay -
	Comparative Half-life- allowed and forbidden decay neutrino physics
NUCLEAR DECAY	-Parity violation - Gamma decay - multipole radiations - Angular
	Correlation - internal conversion – nuclear isomerism – angular
	momentum and parity selection rules.

UNIT V:	Classification of Elementary Particles - Types of Interaction and
	conservation laws – Families of elementary particles – Isospin – Quantum
ELEMENTARY	Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3)
PARTICLES	groups-Gell Mann matrices–Quark Model. Standard model of particle
	physics.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
	1. D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011)
	2. K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons
	(2008)
	3. R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996)
TEXT BOOKS	4. S. B. Patel - Nuclear Physics - An introduction - New Age
	International Pvt Ltd Publishers (2011)
	5. S. Glasstone - Source Book of Atomic Energy - Van Nostrand
	Reinhold Inc., U.S 3rd Revised edition (1968)
	1. L. J. Tassie – The Physics of elementary particles – Prentice Hall Press
	(1973)
	2. H. A. Enge - Introduction to Nuclear Physics - Addison Wesley,
REFERENCE	Publishing Company. Inc. Reading. New York, (1974).
BOOKS	3. Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002)
	4. Bernard L Cohen - Concepts of Nuclear Physics - McGraw Hill
	Education (India) Private Limited; 1 edition (2001)
	5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi.
	1. http://bubl.ac.uk/link/n/nuclearphysics.html
	2. http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp:
	//www.scholarpedia.org/article/Nuclear_Forces
	3. https://www.nuclear-power.net/nuclear-power/nuclear-reactions/
WEB SOURCES	4. http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.
	html
	5. <u>https://www.ndeed.org/EducationResources/HighSchool/Radiography/r</u>
	adioactivedecay.html

CO1	Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K1, K5
	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	К3
	Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.	K3, K4
	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	K5
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	2	2	2	2	2	2	2	2
CO2	3	3	2	2	1	2	1	2	2	2
CO3	3	3	1	2	1	2	1	1	2	2
CO4	3	3	2	3	2	3	2	2	3	3
CO5	3	3	2	3	2	3	2	3	3	3

Paper 9 - NUMERICAL METHODS AND	II YEAR - THIRD SEMESTER
COMPUTER PROGRAMMING	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	NUMERICAL METHODS AND COMPUTER PROGRAMMING	Core				5	6	75

Pre-Requisites						
Prior knowledge on computer and basic mathematics						
Learning Objectives						
> To make students to understand different numerical approaches to solve a problem.						
To understand the basics of programming						

UNITS	Course Details
UNIT I: SOLUTIONS OF EQUATIONS	Zeros or Roots of an equation - Non-linear algebraic equation and transcendental equations - Zeros of polynomials –Roots of polynomials, nonlinear algebraic equations and transcendental equations using Newton-Raphson method – Convergence of solutions in Bisection and Newton-Raphson methods – Limitations of Bisection and Newton-Raphson methods.
UNIT II: LINEAR SYSTEM OF EQUATIONS	Simultaneous linear equations and their matrix representation– Inverse of a Matrix– Gaussian elimination method – Gauss Jordan method – Inverse of a matrix by Gauss elimination method - Eigen values and eigenvectors of matrices – Direct method - Power method and Jacobi Method to find the Eigen values and Eigen vectors.
UNIT III: INTERPOLATION AND CURVE FITTING	Interpolation with equally spaced points - Newton forward and backward interpolation - Interpolation with unevenly spaced points - Lagrange interpolation – Curve fitting – Method of least squares – Fitting a polynomial.
UNIT IV: DIFFERENTIATION, INTEGRATION AND SOLUTION OF DIFFERENTIAL EQUATIONS	Numerical differentiation – Numerical integration – Trapezoidal rule – Simpson's rule – Error estimates – Gauss-Legendre, Gauss- Laguerre, Gauss-Hermite and Gauss-Chebyshev quadrature – solution of ordinary differential equations – Euler and RungaKutta methods.
UNIT V: PROGRAMMING WITH C	Flow-charts – Integer and floating point arithmetic expressions – Built-in functions – Executable and non-executable statements – Subroutines and functions – Programs for the following computational methods: (a) Zeros of polynomials by the bisection method, (b) Zeros of polynomials/non-linear equations by the Newton-Raphson method, (c) Newton's forward and backward interpolation (d) Trapezoidal and Simpson's Rules, (e) Solution of first order differential equations by Euler's method.

	Expert Lectures, Online Seminars - Webinars on Industrial
UNIT VI: PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
	Communication Skill Enhancement, Social Accountability and
COMPONENTS	Patriotism
TEXT BOOKS	 V. Rajaraman, 1993, Computer oriented Numerical Methods, 3rd Edition. PHI, New Delhi M. K. Jain, S. R. Iyengar and R. K. Jain, 1995, Numerical Methods for Scientific and Engineering Computation, 3rd Edition, New Age Intl., New Delhi S. S. Sastry, Introductory Methods of Numerical analysis, PHI, New Delhi F. Scheid, 1998, Numerical Analysis, 2nd Edition, Schaum's series, McGraw Hill, New York W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, 1992, Numerical Recipes in FORTRAN,
	2nd Edition, Cambridge Univ. Press
	1. S. D. Conte and C. de Boor, 1981, Elementary Numerical analysis-an algorithmic approach, 3rd Edition, McGraw Hill,)
	2. B. F. Gerald, and P. O. Wheatley, 1994, Applied Numerical analysis, 5th Edition, Addison-Wesley, MA.
REFERENCE BOOKS	3. B. Carnagan, H. A. Luther and J. O. Wilkes, 1969, Applied Numerical Methods, Wiley, New York.
	4. S. S. Kuo, 1996, Numerical Methods and Computers,
	 Addison-Wesley. 5. V. Rajaraman, Programming in FORTRAN / Programming in C, PHI, New Delhi
	1. https://www.scribd.com/doc/202122350/Computer-
WEB SOURCES	 Oriented-Numerical-Methods-by-V-RajaRaman https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/referencespapers.aspx?referenceid=1682874
	 <u>https://nptel.ac.in/course/122106033/</u> <u>https://nptel.ac.in/course/103106074/</u>
	5. <u>https://onlinecourses.nptel.ac.in/noc20_ma33/preview</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1Recall the transcendental equations and analyze the different root finding	
methods. Understand the basic concept involved in root finding procedure such as	(1, K2
Newton Raphson and Bisection methods, their limitations.	
CO2 Relate Simultaneous linear equations and their matrix representation Distinguish	5
between various methods in solving simultaneous linear equations.	13
CO3 Understand, how interpolation will be used in various realms of physics and K	52, K3

1	Apply to some simple problems Analyze the newton forwainterpolation
s K3, K4	CO4 Recollect and apply methods in numerical differentiation and i the trapezoidal and Simson's method of numerical integration.
K2	CO5 Understand the basics of C-programming and conditional stater
-	CO5 Understand the basics of C-programming and conditional stater K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1)

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	1	1	2	3	2	2	3
CO2	3	2	3	1	1	2	3	2	2	3
CO3	3	2	3	1	1	2	3	2	2	3
CO4	3	2	3	1	1	2	3	2	2	3
CO5	3	2	3	1	1	2	3	2	2	3

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	Practical – III NUMERICAL METHODS AND COMPUTER PROGRAMMING (FORTRAN/C)	Core				4	6	75

Pre-Requisites

Basic knowledge in differential equation and linear algebra

Basic knowledge of operating system and computer fundamentals.

Learning Objectives

- The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN
- > To equip the computational skill using various mathematical tools.
- > To apply the software tools to explore the concepts of physical science.
- > To approach the real time activities using physics and mathematical formulations.

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. Runge Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 14. Newton's cotes formula
- 15. Trapezoidal rule
- 16. Simpson's 1/3 rule
- 17. Simpson's 3/8 rule
- 18. Boole's rule
- 19. Gaussian quadrature method (2 point and 3 point formula)
- 20. Giraffe's root square method for solving algebraic equation

r	
	1. Numerical methods using Matlab – John Mathews & Kurtis Fink,
	Prentice Hall, New Jersey 2006
	2. Numerical methods in Science and Engineering - M.K. Venkataraman,
	National Publishing Co. Madras, 1996
	3. V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed.
TEXT BOOKS	(Prentice-Hall, New Delhi.
	4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for
	Scientific and Engineering Computation, 3 rd Ed. New Age
	International, New Delhi.
	5. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New
	Delhi.
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An
	Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).
	2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th
	Edition, Addison Wesley, Reading, MA.
REFERENCE	3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical
BOOKS	Methods (Wiley, New York.
	4. S.S. Kuo, 1996, Numerical Methods and Computers, Addison -
	Wesley, London.
	5. V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI,
	New Delhi.

At the end of the course the student will be able to:

CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1
CO2	Use various numerical methods in describing/solving physics problems.	K4
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific	K5
005	problems.	110
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K5
CO5	To apply various mathematical entities, facilitate to visualise any complicate tasks.	К3
CO6	Process, analyze and plot data from various physical phenomena and interpret their	K4
	meaning	114
CO7	Identify modern programming methods and describe the extent and limitations of	K1
01	computational methods in physics	111
CO8	Work out numerical differentiation and integration whenever routine are not	K5
	applicable.	NJ
CO9	Apply various interpolation methods and finite difference concepts.	K4
	Understand and apply numerical methods to find out solution of algebraic equation	K1
CO10	liging different methods under different conditions, and numerical solution of system of	K1, K4
	algebraic equation.	114
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3

CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

Elective –V Option 1- MATERIALS SCIENCE II YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MATERIALS SCIENCE	ELECTIVE				3	3	75

	Pre-Requisites
≻ I	Basic knowledge on different types of materials
	Learning Objectives
> 7	Fo gain knowledge on optoelectronic materials
\succ]	To learn about ceramic processing and advanced ceramics
>]	To understand the processing and applications of polymeric materials
> 7	To gain knowledge on the fabrication of composite materials

To learn about shape memory alloys, metallic glasses and nanomaterials

UNITS	Course details
UNIT I: OPTOELECTRONIC MATERIALS	Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission - loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.
UNIT II	Ceramic processing: powder processing, milling and sintering -
CERAMIC	structural ceramics: zirconia, almina, tungsten carbide - electronic
MATERIALS	ceramics – refractories – glass and glass ceramics
UNIT III	Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass

POLYMERIC	transition temperature and its measurement - visco elasticity - polymer
MATERIALS	processing techniques – applications: conducting polymers, biopolymers
	and high temperature polymers.
	Particle reinforced composites – fiber reinforced composites –
UNIT IV	mechanical behavior – fabrication methods of polymer matrix
COMPOSITE	composites and metal matrix composites - carbon/carbon composites:
MATERIALS	fabrication and applications.
UNIT V: NEW MATERIALS	Shape memory alloys: mechanisms of one-way and two-way shape memory effect, examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
TEXT BOOKS	 Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007 P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi(For units 2,3,4 and 5) G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill M. Arumugam, 2002, Materials Science, 3rd revised Edition, Anuratha Agencies 						
REFERENCE BOOKS	 B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience and Nanotechnology. Springer- Verlag, 2012. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011. Lawrence H. VanVlack, 1998. Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley. H. Iabch and H. Luth, 2002, Solid State Physics – An Introduction to Principles of Materials Science, 2nd Edition, Springer. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University Press, 2008. 						
WEB SOURCES	1. <u>https://onlinecourses.nptel.ac.in/noc20_mm02/preview</u>						
	2. <u>https://nptel.ac.in/courses/112104229</u> https://grabiya.pptal.ac.in/courses/112/105/112105081						
	 <u>https://archive.nptel.ac.in/courses/113/105/113105081</u> <u>https://nptel.ac.in/courses/113/105/113105025/</u> 						
	https://eng.libretexts.org/Bookshelves/Materials_Science/Supplemental_M						
	odules (Materials Science)/Electronic Properties/Lattice_Vibrations						

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO1 Acquire knowledge on optoelectronic materials

K1

CO2 Be able to prepare ceramic materials	K3
CO3 Be able to understand the processing and applications of polymeric materials	K2, K3
CO4Be aware of the fabrication of composite materials	K5
CO5 Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	K1
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

Map course outcomes (**CO**) for each course with program outcomes (**PO**) and program specific outcomes (**PSO**) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	2	2	2	2	1	2	3
CO2	2	3	3	2	2	2	2	1	2	2
CO3	2	3	2	2	2	2	2	2	2	2
CO4	1	3	2	3	2	3	2	2	2	2
CO5	2	3	2	2	2	2	2	2	2	2

Elective V -Option 2 - BIO PHYSICSII YEAR - THIRD SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	BIO PHYSICS	ELECTIVE				3	3	75

	Pre-Requisites
Fundam	ental concepts of Physics and Biology
	Learning Objectives
> 7	Fo understand the physical principles involved in cell function maintenance.
> 7	To understand the fundamentals of macromolecular structures involved in propagation of
1:	ife.
> 7	Fo understand the biophysical function of membrane and neuron.
> 7	Fo understand various kinds of radiation and their effects on living system and to know the
h	nazards posed by such radiations and the required precautions.

> To understand the physical principles behind the various techniques available for interrogating biological macromolecules.

UNITS	Course Details
UNIT I: CELLULAR BIOPHYSICS	Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.
UNIT II: MOLECULAR BIOPHYSICS	Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.
UNIT III: MEMBRANE AND NEURO BIOPHYISCS	Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels. Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.
UNIT IV: RADIATION BIO PHYSICS	X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer.
UNIT V: PHYSICAL METHODS IN BIOLOGY	Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation: Differential centrifugation, density gradient centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis.
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009 Biophysics, P. S. Mishra VK Enterprises, 2010. Biophysics, M. A Subramanian, MJP Publishers, 2005. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.
REFERENCE BOOKS	 Biomstrumentation, E. Veerakuman, MPT rubiniers, 2000. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008). Essential cell biology by Bruce Albert et al (Garland Science) Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983). Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media). Biological spectroscopyby Iain D. Campbell, Raymond A. Dwek

WEB SOURCES	1. General Bio: http://www.biology.arizona.edu/DEFAULT.html
	2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm
	3. Electrophoresis: http://learn.genetics.utah.edu/content/labs/gel/
	4. Online biophysics programs: <u>http://mw.concord.org/modeler/</u>
	5. https://blanco.biomol.uci.edu/WWWResources.html

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should able to apply the cell signaling mechanism and its electrical activities.	K2, K3						
	Comprehension of the role of biomolecular conformation to function.							
CO3	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	K2, K5						
	To know the effects of various radiations on living systems and how to prevent ill effects of radiations.	K5						
CO5	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4						
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	1	2	1	3	3	2
CO2	3	3	3	2	1	2	1	3	3	2
CO3	3	3	3	3	1	1	2	3	3	2
CO4	3	3	3	2	1	1	2	3	3	3
CO5	3	3	3	3	1	1	2	3	3	3

NME II - SEWAGE AND WASTE WATER	II YEAR – THIRD SEMESTER
TREATMENT AND REUSE	

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SEWAGE AND WASTE WATER TREATMENT AND REUSE	ELECTIVE				2	3	75

	Pre-Requisites
Basic kn	nowledge of classification of sewage and solid waste and its harmful effects.
	Learning Objectives
r <	Fo gain basic knowledge in sewage and waste water Treatment procedures
r <	Fo gain industry exposure and be equipped to take up job.
r <	Fo harness entrepreneurial skills.
r <	To analyze the status of sewage and waste water management in the nearby areas.

> To sensitize the importance of healthy practices in waste water management.

UNITS	Course Details
UNIT I: RECOVERY & REUSE OF WATER	Recovery & Reuse of water from Sewage and Waste water: Methods of recovery: Flocculation - Sedimentation - sedimentation with coagulation - Filtration - sand filters - pressure filters - horizontal filters - vector control measures in industries - chemical and biological methods of vector eradication
UNIT II: DISINFECTION	Disinfection: Introduction to disinfection and sterilization: Disinfectant - UV radiation - Chlorination - Antisepsis - Sterilant - Aseptic and sterile - Bacteriostatic and Bactericidal - factors affecting disinfection.

UNIT III: CHEMICAL DISINFECTION	Chemical Disinfection: Introduction - Theory of Chemical Disinfection - Chlorination Other Chemical Methods - Chemical Disinfection Treatments Requiring - Electricity - Coagulation/Flocculation Agents as Pretreatment - Disinfection By-Products(DBPs)							
UNIT IV:	Physical Disinfection: Introduction - Ultraviolet Radiation - Solar							
PHYSICAL	Disinfection - Heat Treatment - Filtration Methods - Distillation -							
DISINFECTION	Electrochemical Oxidation Water Disinfection by Microwave Heating.							
UNIT V:								
INDUSTRIAL	Industrial visit – data collection and analysis - presentation							
VISIT								
UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial							
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and							
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism							

	1. Drinking water and disinfection technique, Anirudhha Balachandra.
	CRC press (2013)
	2. Design of Water and Wastewater Treatment Systems (CV-424/434),
	ShashiBushan,(2015) Jain Bros
	3. Integrated Water Resources Management, Sarbhukan M M, CBS
TEXT BOOKS	PUBLICATION (2013)
	4. C.S. Rao, Environmental Pollution Control Engineering, New Age
	International, 2007
	5. S.P. Mahajan, Pollution control in process industries, 27th Ed. Tata
	McGraw Hill Publishing Company Ltd., 2012.
	1. Handbook of Water and Wastewater Treatment Plant Operations,
	Frank. R Spellman, CRC Press, 2020
DEFEDENCE	2. Wastewater Treatment Technologies, MritunjayChaubey, Wiley,
REFERENCE	2021.
BOOKS	3. Metcalf and Eddy, Wastewater Engineering, 4th ed., McGraw Hill
	Higher Edu., 2002.
	4. W. Wesley Eckenfelder, Jr., Industrial Water Pollution Control, 2nd

	Edn., McGraw Hill Inc., 19895. Lancaster, Green Chemistry: An Introductory Text, 2nd edition, RSC publishing, 2010.
WEB SOURCES	 <u>https://www.google.co.in/books/edition/Drinking_Water_DisinfectionTechniques/HVbNBQAAQBAJ?hl=en</u> <u>2.https://www.meripustak.com/Integrated-Solid-Waste-Management-Engineering-Principles-And-Management-Issues-125648?</u> <u>3.https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB</u> <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB</u> <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARIsAC-gM0iVpismAJN93CHA1sX6NuNeOKLXfQJjxHCOVH3QXjJ1iACq30KofoaAmFsEALw_wcB</u> <u>https://www.amazon.in/Design-Wastewater-Treatment-Systems-CV-424/dp/B00IG2PI6K/ref=asc_df_B00IG2PI6K/?tag=googleshopmob-21&linkCode=df0&hvadid=397013004690&hvpos=&hvnetw=g&hvrand=4351305881865063672&hvpone=&hvptwo=&hvqmt=&hvdev=m&hvdvcmdl=&hvlocint=&hvlocphy=9061971&hvtargid=pla-890646066127&psc=1&ext_vrnc=hi</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1
CO2	Equipped to take up related job by gaining industry exposure	K5
CO3	Develop entrepreneurial skills	K3
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

Internsing/ industrial Activity II TEAR - THIRD SERVESTER	Internship / Industrial Activity	II YEAR - THIRD SEMESTER
---	----------------------------------	--------------------------

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	Internship / Industrial Activity					2		100

Pre-Requisites
To get to know about latest technology in Industries
Learning Objectives
To gain combined knowledge about theory and practical
\succ To gain industry exposure and be equipped to take up job.
To harness entrepreneurial skills.

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

	A chance to learn practically from theoretical knowledge through interaction, working methods in large industries.	K1
	opportunity to interact with industrial experts, how the machines are working, and which principles they work for.	К2
CO3	It provides an opportunity to explore different sectors in which the students are passionate about it, Manufacturing, services, finance, and marketing.	K3
	To know about the latest technologies. Technology development could be the main factor	K2
CO5	Building relationships with companies, helps to get a good job in the future.	K5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	2	3	3	3	2	3	2	3	2
CO2	2	3	2	2	3	3	2	3	2	2
CO3	2	2	2	2	2	3	3	3	3	2
CO4	3	2	3	3	2	3	3	3	3	2
CO5	2	2	2	2	3	3	2	2	2	2

Paper 11 - SPECTROSCOPY

II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SPECTROSCOPY	Core				5	6	75

Pre-Requisites

Thorough understanding of electromagnetic spectrum, mathematical abilities, knowledge of molecules, their structure, bond nature, physical and chemical behaviour

Learning Objectives

- > To comprehend the theory behind different spectroscopic methods
- To know the working principles along with an overview of construction of different types of spectrometers involved
- > To explore various applications of these techniques in R &D.
- Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.
- Understand this important analytical tool

UNITS	Course Details						
	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-						
UNITI:	reduced mass – rotational constant Effect of isotopic substitution - Non rigid						
	rotator - Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric						
MICROWAVE	asymmetric top molecules - Hyperfine structure and quadrupole moment of						
SPECTROSCOPY	linear molecules - Instrumentation techniques - block diagram -Information						
	Derived from Rotational Spectra- Stark effect- Problems.						
	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic						
UNITII:	oscillator - fundamentals, overtones and combinations- Fundamental modes of						
	vibration of H ₂ O and CO ₂ -Introduction to application of vibrational spectra- IR						
INFRA-RED	Spectrophotometer Instrumentation (Double Beam Spectrometer) - Fourier						
SPECTROSCOPY	Transform Infrared Spectroscopy - Interpretation of vibrational spectra- remote						
SPECIKUSCUPI	analysis of atmospheric gases like N2O using FTIR by National Remote Sensing						
	Centre (NRSC), India- other simple applications						
	Theory of Raman Scattering - Classical theory - molecular polarizability -						
UNITIII:	Quantum theory of Raman effect - rotational Raman spectra of linear molecule -						
UNITIII:	symmetric top molecule – Stokes and anti-stokes line- SR branch -Raman						
RAMAN	activity of H_2O and CO_2 .Mutual exclusion principle- determination of N_2O						
SPECTROSCOPY	structure -Instrumentation technique and block diagram -structure determination						
SI LUI KUSUUP I	of planar and non-planar molecules using IR and Raman techniques - FT Raman						
	spectroscopy- SERS						

UNITIV: RESONANCE SPECTROSCOPY	Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Double resonance- Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin - Spin Interaction – interpretation of simple organic molecules - Instrumentation techniques of NMR spectroscopy – NMR in Chemical industries– Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR
UNITV: UV	Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - molar absorptivity – transmittance and absorbance - Color in organic compounds- Absorption by organic - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-
SPECTROSCOPY	Spectrophotometer -Simple applications
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi. D.N. Satyanarayana, 2001, <i>Vibrational Spectroscopy and Applications</i>, New Age International Publication. B.K. Sharma, 2015, <i>Spectroscopy</i>, Goel Publishing House Meerut. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers.
REFERENCE BOOKS	 J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink.
WEB SOURCES	 <u>https://www.youtube.com/watch?v=0iQhirTf2PI</u> <u>https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5</u> <u>https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy- 8jEee</u> <u>https://onlinecourses.nptel.ac.in/noc20_cy08/preview</u> <u>https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy- introduction-XCWRu</u>

COURSE OUTCOMES:

At the end of the course the student will be able to:

CO1 Understand fundamentals of rotational spectroscopy, view molecules as elastic K2

rotors and interpret their behaviour. Able to quantify their nature and correlate	
them with their characteristic properties.	,
CO2 Understand the working principles of spectroscopic instruments and theoretical background of IR spectroscopy. Able to correlate mathematical process of Fourier transformations with instrumentation. Able to interpret vibrational spectrum of small molecules.	al K2, K3
CO3 Interpret structures and composition of molecules and use their knowledge of Raman Spectroscopy as an important analytical tool	К5
CO4 Use these resonance spectroscopic techniques for quantitative and qualitative estimation of a substances	K4
CO5 Learn the electronic transitions caused by absorption of radiation in the UV/V region of the electromagnetic spectrum and be able to analyze a simple UV spectrum.	^{is} K1, K5
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	2	3	3	3	3	3	2
CO2	2	2	2	3	3	3	3	3	3	2
CO3	3	2	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	3	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3

II YEAR - FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	PRACTICAL IV	Core				5	6	75

Pre-Requisites

Knowledge and handling of general and experiments of Physics, as well as fundamentals of digital principles,

Learning Objectives

- > To understand the theory and working of Microprocessor, Microcontroller and their applications
- To use microprocessor and Microcontroller in different applications

Course Details

(Minimum of Twelve Experiments from the list)

- 1. Determination of Thickness of air film. Solar spectrum Hartmann's formula. Edser and Butler fringes.
- 2. Determination of Solar constant
- 3. Determination of velocity and compressibility of a liquid using Ultrasonics Interferometer
- 4. Arc spectrum Iron.
- 5. Determination of Diffraction pattern of light with circular aperture using Diode/He-Ne laser.
- 6. Measurement of Magnetic Susceptibility Guoy's method
- 7. GM counter Feather's analysis: Range of Beta rays
- 8. Study the beam divergence, spot size and intensity profile of Diode/He-Ne laser.
- 9. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 10. Molecular spectra CN bands
- 11. Determination of Planck Constant LED Method
- 12. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 13. Construction of square wave generator using IC 555 Study of VCO
- 14. Study of Binary to Gray and Gray to Binary code conversion.
- 15. Construction of Encoder and Decoder circuits using ICs.
- 16. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 17. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 18. Study of Modulus Counter
- 19. Construction of Multiplexer and Demultiplexer using ICs.
- 20. 8-bit addition and subtraction, multiplication and division using microprocessor 8085
- 21. Sum of a set of N data (8-bit number), picking up the smallest and largest number in an array. Sorting in ascending and descending orderusing microprocessor 8085
- 22. Code conversion (8-bit number): a) Binary to BCD b) BCD to binaryusing microprocessor

8085

- 23. Addition of multi byte numbers, Factorialusing microprocessor 8085
- 24. Clock program- 12/24 hours-Real time application Six Digits Hexa Decimal and Decimal Counters using microprocessor 8085
 25. Interfacing of LED Binary up/down counter BCD up/down counter and N/2N up/down
- 25. Interfacing of LED Binary up/down counter, BCD up/down counter and N/2N up/down counter using microprocessor 8085
- 26. Interfacing of seven segment display using microprocessor 8085
- 27. Interfacing of 8-bit R / 2R ladder DAC (IC 741) Wave form generation Square, Rectangular, Triangular, Saw tooth and Sine waves using microprocessor 8085
- 28. Interfacing of DC stepper motor Clockwise, Anti-clockwise, Angular movement and Wiper action using microprocessor 8085

29. Interfacing of Temperature Controller and Measurementusing microprocessor 8085

30. Interfacing of Traffic light controller using microprocessor 8085

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan
	2. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad,
	Eastern Economy Edition.
TEXT BOOKS	3. Electronic lab manual Vol I, K ANavas, Rajath Publishing
IEAI DUURS	4. Douglas V. Hall, Microprocessors and Interfacing programming and
	Hardware, Tata Mc Graw Hill Publications (2008)
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085",
	3rd Edition S.Visvanathan Pvt, Ltd.
	1. Advanced Practical Physics, S.P Singh, Pragati Prakasan
	2. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley
	& Sons (Asia) Pvt. ltd
DEFEDENCE	3. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
REFERENCE	Publishing
BOOKS	4. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi
	5. Microprocessor and Its Application - S. Malarvizhi, Anuradha
	Agencies Publications

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1 Develop the programming skills of Microprocessor						
CO2 Appreciate the applications of Microprocessor programming						
CO3 Understand the structure and working of 8085 microprocessor and apply it.	K1, K3					
CO4 Acquire knowledge about the interfacing peripherals with 8085 microprocessor.	K1, K4					
CO5 Acquire knowledge about the interfacing 8051 microcontroller with various peripherals.	⁵ K1,K4					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	<u> </u>					

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	1	3	2
CO2	2	1	3	3	3	2	2	1	3	2
CO3	3	3	1	3	3	2	2	1	3	2
CO4	3	3	3	3	3	2	2	1	3	2
CO5	3	3	3	3	3	2	2	1	3	2

METHOD OF EVALUATION:

Continuous Internal Assessment	End Semester Examination	Total	Grade
25	75	100	

	Project with Viva-Voce	II YEAR – FOURTH SEMESTER						
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	Project with Viva-Voce	Project				7	10	100

Pre-Requisites
Knowledge and practice of doing research
Learning Objectives
Every individual learner has to carry out a minor research workThe area of focus can be related to the core subjects

Inter-disciplinary research works are encouraged. The project work must retain its originality and avoidance of plagiarism is mandatory

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	the most effective ways for students to understand scientific concepts and	К2
	processes.	112
CO2	Hands-on projects help students visualize how these concepts work in the real	K3
	world and instill an understanding that they can apply their knowledge	NJ
CO3	They provide an opportunity for learners to experiment themselves which	
	helps improve critical thinking skills by observing various outcomes with	K4
	different variables set up within specific parameters.	1
CO4	The opportunity to design and execute their own experiments also helps	
	students develop a sense of ownership which in turn encourages them to take	K4
	more responsibility for what they learn.	1
CO5	Science Experiments emphasize critical thinking skills, problem-solving	K5
	techniques, communication skills, and higher-order thinking.	NЭ
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	2	3	3	2	2	2	3	3
CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	2	2	3	3	2	2	2	3	3

CO2	2	2	3	3	3	2	2	3	3	3
CO3	3	3	3	3	3	3	3	3	3	3
CO4	3	2	3	3	3	3	2	3	3	3
CO5	3	3	3	3	3	3	3	3	3	3
CO6	2	2	2	3	3	2	2	2	3	3
CO7	2	2	3	3	3	2	2	3	3	3
CO8	3	3	3	3	3	3	3	3	3	3
CO9	3	3	3	3	3	3	3	3	3	3
CO10	3	3	3	3	3	3	3	3	3	3

Elective – VI – Option 1 - SOLID WASTE	
MANAGEMENT	

II YEAR – FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	SOLID WASTE MANAGEMENT	ELECTIVE				3	4	75

Pre-Requisites	
Basic knowledge of solid waste and its type	
Learning Objectives	
To gain basic knowledge in solid waste management procedures	
To gain industry exposure and be equipped to take up a job.	
To harness entrepreneurial skills.	
\succ To analyze the status of solid waste management in the nearby areas.	

To analyze the status of solid waste management in the hearby areas.
 To sensitize the importance of healthy practices in waste managements

UNITS	Course Details
UNIT I: SOLID WASTE	Introduction - Definition of solid waste - Types – Hazardous Waste: Resource conservation and Renewal act – Hazardous Waste: Municipal
MANAGEMENT UNIT II:	Solid waste and non-municipal solid waste.
SOLID WASTE CHARACTERISTICS	Solid Waste Characteristics: Physical and chemical characteristics - SWM hierarchy - factors affecting SW generation
UNIT III: TOOLS AND EQUIPMENT	Tools and equipment - Transportation - Disposal techniques - Composting and land filling technique

UNIT IV: ECONOMIC DEVELOPMENT	SWM for economic development and environmental protection Linking SWM and climate change and marine litter.
UNIT V: INDUSTRIAL VISIT	SWM Industrial visit – data collection and analysis - presentation
UNIT VI: PROFESSIONAL COMPONENTS	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and Communication Skill Enhancement, Social Accountability and Patriotism

	1. Handbook of Solid Waste Management /Second Edition, George
TEXT BOOKS	Tchobanoglous, McGraw Hill (2002).
	2. Prospects and Perspectives of Solid Waste Management, Prof. B
	BHosett, New Age International (P) Ltd (2006).
	3. Solid and Hazardous Waste Management, Second Edition, M.N.
	Rao, BSP/BS Publications Books (.(2020
	4. Integrated Solid Waste Management Engineering Principles and
	Management, Tchobanoglous, McGraw Hill (2014).
	5. Solid Waste Management (SWM), Vasudevan Rajaram, PHI
	learning private limited, 2016
	1. Municipal Solid Waste Management, Christian Ludwig, Samuel
REFERENCE BOOKS	Stucki, Stefanie Hellweg, Springer Berlin Heisenberg, 2012
	2. Solid Waste Management Bhide A. D Indian National Scientific
	Documentation Centre, New Delhi Edition 1983 ASIN:
	B0018MZ0C2
	3. Solid Waste Techobanoglous George; Kreith, Frank McGraw
	Hill Publication, New Delhi 2002, ISBN 9780071356237
	4. Environmental Studies Manjunath D. L. Pearson Education
	Publication, New Delhi, 20061SBN-I3: 978-8131709122
	5. Solid Waste Management Sasikumar K. PHI learning, New
	Delhi, 2009 ISBN 8120338693
	1. <u>https://www.meripustak.com/Integrated-Solid-Waste-Management-</u>
	Engineering-Principles-And-Management-Issues-125648
	2. <u>https://testbook.com/learn/environmental-engineering-solid-</u>
	waste-management/
WEB SOURCES	3. <u>https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRARI</u>
	$\frac{sA}{cM_0; V_{pi}, cm_A, IN_0, CH_A, 1, cY_6N_{12}, N_0, OKI, Y_{fOI}, ixHC_0, VH2OY; I$
	<u>gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ_jxHCOVH3QXjJ</u> 1iACa30KofoaAmEcEALw_wcB
	<u>1iACq30KofoaAmFsEALw_wcB</u> https://images.opp.goo.gl/tViW2gLIPfS2oxdD28
	4. <u>https://images.app.goo.gl/tYiW2gUPfS2cxdD28</u>
	5. <u>https://amzn.eu/d/5VUSTDI</u>

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO1	CO1 Gained knowledge in solid waste management	
CO2	Equipped to take up related job by gaining industry exposure	K5

CO3	Develop entrepreneurial skills	K3					
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4					
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5					
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	2	2	2	2	2	3
CO2	2	3	3	2	2	2	3	3	3	2
CO3	2	3	2	2	2	2	3	3	3	2
CO4	3	2	2	2	2	3	3	3	3	2
CO5	2	3	3	2	2	2	3	3	2	3

Elective –VI – Option 2 - MICROPROCESSOR	II YEAR –
8085 AND MICROCONTROLLER 8051	FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	ELECTIVE				3	4	75

Pre-Requisites						
Knowledge of number systems and binary operations						
Learning Objectives						
> To provide an understanding of the architecture and functioning of microprocessor 8085A						
and to the methods of interfacing I/O devices and memory to microprocessor						
> To introduce 8085A programming and applications and the architecture and instruction						
sets of microcontroller 8051						

UNITS	Course Details
UNIT I:8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING	Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter /interval timer.
UNIT II: 8085 INTERFACING APPLICATIONS	Seven segment display interface - Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities –Voltage and current) Measurement of physical quantities (Temperature an strain).
UNIT III: 8051 MICROCONTROLLERHARDWARE	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out 8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set of 8051 – Memory organization of 8051 – Input/Output pins, Ports and Circuits – External data memory and program memory: External program memory, External data memory.
UNIT IV: 8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.

UNIT V: INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051 : Nested interrupts , Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities – Voltage and current) Measurement of physical quantities(Temperature an strain).
UNIT VI: PROFESSIONAL	Expert Lectures, Online Seminars - Webinars on Industrial Interactions/Visits, Competitive Examinations, Employable and
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism
TEXT BOOKS	 A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications (2009). A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013).

	4. B. Ram, Fundamentals of Microprocessors & Microcontrollers,						
	DhanpatRai publications New Delhi (2016).						
	5. V. Vijayendran, 2005, Fundamentals of Microprocessor-8085", 3rd						
	Edition S.Visvanathan Pvt, Ltd.						
	1. Douglas V. Hall, Microprocessors and Interfacing programming and						
	Hardware, Tata Mc Graw Hill Publications (2008)						
	2. Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay,						
	The 8051 Microcontroller and Embedded Systems, Pearson Education						
	(2008).						
	3. Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186,						
REFERENCE	80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New						
BOOKS	Delhi.						
	4. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and						
	Interfacing, Software, Hardware and Applications", Prentice-Hall of						
	India, New Delhi.						
	5. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors:						
	Programming, Interfacing, Software, Hardware and Applications",						
	Prentice-Hall of India, New Delhi.						

	1. https://www.tutorialspoint.com/microprocessor/microprocessor_8085_architectu
WEB	<u>re.html</u>
SOURCE	2. http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io-interfacing/
SUCKCE	3. https://www.geeksforgeeks.org/programmable-peripheral-interface-8255/
5	4. http://www.circuitstoday.com/8051-microcontroller
	5. https://www.elprocus.com/8051-assembly-language-programming/

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.	K1						
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K1						
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3						
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4						
COS	Understand the different applications of microprocessor and microcontroller.	K3,K 5						
K1 - F	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;							

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1

CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	2	3	3	3	3	1	1	1	1	1
CO2	2	1	1	1	1	1	1	1	1	1
CO3	3	3	3	3	3	1	1	1	1	1
CO4	3	3	3	3	3	1	1	1	1	1
CO5	3	3	3	3	3	1	1	1	1	1

SEC 1 – COMMUNICATION ELECTRONICS II YEAR – FOURTH SEMESTER

Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks
	COMMUNICATION ELECTRONICS	ELECTIVE				2	4	75

	Pre-Requisites							
Kno	Knowledge of Regions of electromagnetic spectrum and its characteristics							
	Learning Objectives							
	To comprehend the transmission of electromagnetic waves thorough different types of antenna and also to acquire knowledge about the propagation of waves through earth's atmosphere and along the surface of the earth							
\triangleright	To gain knowledge in the generation and propagation of microwaves							
	To acquire knowledge about radar systems and its applications and also the working principle of colour television							
	To learn the working principle of fiber optics and its use in telecommunication							

- > To learn the working principle of fiber optics and its use in telecommunication
- > To understand the general theory and operation of satellite communication systems

UNITS	Course Details
UNIT I:	Radiation field and radiation resistance of short dipole antenna-
ANTENNAS AND	grounded antenna-ungrounded antenna-antenna arrays-broadside and
WAVE	end side arrays-antenna gain-directional high frequency antennas-sky
PROPAGATION	wave-ionosphere

UNIT II: MICROWAVES	Microwave generation—multicavity Klystron-reflex klystron- magnetrontravelling wave tubes (TWT) and other microwave tubes- MASER-Gunn diode-wave guides-rectangular wave guides-standing wave indicator and standing wave ratio(SWR)
UNIT III: RADAR AND TELEVISION	Elements of a radar system-radar equation-radar performance Factors radar transmitting systems-radar antennas-duplexers-radar receivers and indicators- colour TV transmission and reception-colour mixing principle-colour picture tubes-Delta gun picture tube-PIL colour picture tube-cable TV, CCTV and theatre TV
UNIT IV: OPTICAL FIBER	Propagation of light in an optical fibre-acceptance angle-numerical aperture-step and graded index fibres-optical fibres as a cylindrical waveguide-wave guide equations-wave guide equations in step index fibres -fibre losses and dispersion-applications
UNIT V: SATELLITE COMMUNICATION	Orbital satellites-geostationary satellites-orbital patterns-satellite system link models-satellite system parameters-satellite system link equation link budget-INSAT communication satellites

UNIT VI:	Expert Lectures, Online Seminars - Webinars on Industrial						
PROFESSIONAL	Interactions/Visits, Competitive Examinations, Employable and						
COMPONENTS	Communication Skill Enhancement, Social Accountability and Patriotism						
TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991). M. Kulkarani, Microwave and radar engineering, UmeshPublications, 1998. Mono Chrome and colour television, R. R. Ghulathi 						
REFERENCE BOOKS	 Electronic communications – Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998 Dennis Roddy and Coolen,1995,<i>Electronics communications</i>, Prentice Hall of India IV Edition. Wayne Tomasi, 1998 "Advanced Electronics communication System" 4thedition, Prentice Hall of India, 1998 S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition. 						
WEB SOURCES 1. https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/ WEB SOURCES 2. https://www.polytechnichub.com/difference-analog-instruments/ 3. http://nptel.iitm.ac.in/ 4. http://web.ewu.edu/ 5. http://nptel.iitm.ac.in/							

	Discuss and compare the propagation of electromagnetic waves through sky and on	
	earth's surface Evaluate the energy and power radiated by the different types of	K1, K5
	antenna	
CO2	Compare and differentiate the methods of generation of microwaves analyze the	
	propagation of microwaves through wave guides- discuss and compare the	K4
	different methods of generation of microwaves	
CO3	Classify and compare the working of different radar systems- apply the principle	
	of radar in detecting locating, tracking, and recognizing objects of various kinds at	K3
	considerable distances – discuss the importance of radar in military- elaborate and	-
	compare the working of different picture tube	
CO4	Classify, discuss and compare the different types of optical fiber and also to	K1,
	justify the need of it-discover the use of optical fiber as wave guide	К3
CO5	Explain the importance of satellite communication in our daily life-distinguish	
	between orbital and geostationary satellites elaborate the linking of satellites with	K4
	ground station on the earth	
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

	Extension ActivityII YEAR - FOURTHSEMESTER								
Subject Code	Subject Name	Category	L	Т	Р	Credits	Inst. Hours	Marks	

Extension Activity					1		100
--------------------	--	--	--	--	---	--	-----

	Pre-Requisites
	To give them the opportunities for their personality development.
	Learning Objectives
	Identify the needs and problems of the social and involve them in problem solving process.
\triangleright	To gain knowledge in the generation and propagation of microwaves
	Utilize their knowledge in finding practical solution to individual and community problems.
\geqslant	Acquire leadership qualities and democratic attitude
\geq	Develop capacity to meet emergencies and natural disasters.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1	It's an exceptional way to engage in active learning and develop sufficient science literacy					
CO2	Able to take their natural curiosity and advance their understanding in a given area through research					
CO3	Deepening of student's knowledge, understanding and skills in alignment elements of effective practice	K1				
CO4	Promoting the development of higher order thinking skills like evaluation, logical reasoning and problem solving	К3				
CO5	It is a foundation for lifelong learning dispositions	K4,K5				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

MAPPING WITH PROGRAM OUTCOMES:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3
									÷	· · ·
	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10

80	

CO1	3	3	3	1	2	2	3	2	1	3
CO2	3	3	3	1	2	2	3	2	1	3
CO3	3	3	3	1	2	2	3	2	1	3
CO4	3	3	3	1	2	2	3	2	1	3
CO5	3	3	3	1	2	2	3	2	1	3

