ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN, PALANI.

(Autonomous)

(Re-accredited With B⁺⁺grade by NAAC in 3rd Cycle)

M.Sc., MATHEMATICS

SYLLABUS TO BE IMPLEMENTED FROM THE ACADEMIC YEAR 2022-2025 (CHOICE BASED CREDIT SYSTEM)

M.SC MATHEMATICS SYLLABUS 2022 ONWARDS

DEPARTMENT OF MATHEMATICS M.SC. MATHEMATICS SYLLABUS BATCH: 2022-2025

FACULTY MEMBERS OF MATHEMATICS DEPARTMENT

Dr. K, Meena M.Sc., M.Phil., PGDCA., Ph.D. Assistant Professor and Head Dr.V.P.AnujaM.Sc., M.Phil., Ph.DAssistant Professor Dr.R.Vasanthi M.Sc., M.Phil., B.Ed., PGDCA., Ph.D., Assistant Professor

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (Affiliated to Mother Teresa Women's University, Kodaikanal) Nationally Reaccredited with B⁺⁺ Grade by NAACin 3rd Cycle Chinnakalayamputhur, Palani - 624 615.

Department of Mathematics- Outcome Based Education Syllabus 2022-2025

M.SC MATHEMATICS SYLLABUS 2022 ONWARDS

DEPARTMENT OF MATHEMATICS Choice Based Credit System(CBCS) (2022-2023 onwards) M.SC. MATHEMATICS

Preamble:

The main aim of the Programme is intended to provide in-depth knowledge to the students in advanced Pure and Applied mathematics and prepare them for various research activities and career opportunities. The Programme is designed to impart proficiency in Mathematical application in day-to-day in simple and complex situations. The Programme also will enable the learners to shine as collaborators and innovators in addressing social, technical, and business challenges. Programme through its wide range of Courses trains the students as competent citizens with advanced mathematical knowledge and ethically sound humans with its insistence of human ethics. The Programme is intended to promote the culture of interdisciplinary studies and research that is much needed for the current scenario.

Program	Program Educational Objectives (PEOs)		
The M. S	c. Mathematics program describe accomplishments that graduates are expected to		
attain wit	hin five to seven years after graduation		
	Provide a strong foundation in different areas of Mathematics, so that the students		
PEO1	can compete with their contemporaries and excel in the various careers in		
	Mathematics.		
DEO2	Motivate and prepare the students to pursue higher studies and research, thus		
contributing to the ever-increasing academic demands of the country.			
	Enrich the students with strong communication and interpersonal skills, broad		
PEO3	knowledge and an understanding of multicultural and global perspectives, to work		
	effectively in multidisciplinary teams, both as leaders and team members.		
	Facilitate integral development of the personality of the student to deal with ethical		
PEO4	and professional issues, and also to develop ability for independent and lifelong		
	learning.		
PEO5	improvise the women resource that is furnished with the mathematical skills that are		
	necessary in the altering industrial and socio-economic development of thecountry		

M.SC MATHEMATICS SYLLABUS 2022 ONWARDS

Program Specific Outcomes (PSOs)			
After the su	accessful completion of M. Sc. Mathematics program, the students are expected to		
PSO1	Communicate concepts of Mathematics and its applications.		
PSO2	Acquire analytical and logical thinking through various mathematical tools and techniques.		
PSO3	Investigate real life problems and learn to solve them through formulating mathematical models.		
PSO4	Attain in-depth knowledge to pursue higher studies and ability to conduct research.Work as mathematical professional		
PSO5	Achieve targets of successfully clearing various examinations/interviews for placements in teaching, banks, industries and various other organizations/services.		

Program	Outcomes (POs)		
On succe	ssful completion of the M. Sc. Mathematics program, the students will be able to		
PO1	Demonstrate in-depth knowledge of Mathematics, both in theory and application.		
PO2	Attain the ability to identify, formulate and solve challenging problems in Mathematics.		
PO3	Know the various specialised areas of advanced mathematics and its applications.		
PO4	Analyze complex problems in Mathematics and propose solutions using research- based knowledge.		
PO5	Obtain the accurate solutions for the community oriented problems via various mathematical models.		
PO6	Work individually or as a team member or leader in uniform and multidisciplinary settings.		
PO7	Crack lectureship and fellowship exams affirmed by UGC like CSIR-NET and SET.		
DOP	Apply the Mathematical concepts, in all the fields of learning including higher		
P08	research, and recognize the need and prepare for lifelong learning.		
PO9	Know the use of computers both as an aid and as a tool to study problems in Mathematics.		
PO10	Inculcate the knowledge of formulation and apply the mathematical concepts which are suitable for real life applications.		

M.SC MATHEMATICS SYLLABUS 2022 ONWARDS

1. Eligibility : B.Sc.Mathematics

2. General Guidelines for PGProgramme

i. **Duration:** The programme shall extend through a period of 4 consecutive semesters and the duration of a semester shall normally be 90 days or 450 hours. Examinations shall be conducted at the end of each semester for the respectivesubjects.

ii. Mediumof Instruction: English

- iii. **Evaluation:** Evaluation of the candidates shall be through Internal Assessment and External Examination.
 - EvaluationPattern

Evaluation	Theory		Practical	
Pattern	Min	Max	Min	Max
Internal	13	25	20	40
External	38	75	30	60

- Internal (Theory): Test (15) + Assignment (5) + Seminar/Quiz(5) = 25
- External Theory:75

Components		Marks	Total
		Theory	
CIA I	30	(30+30 = 60/4)	
CIA II	30	15	25
Assignment		5	
Seminar/Quiz		5	
	F	Practical	
CIA Practical		25	
Observation Notebook		10	40
Attenda	nnce	5	

Components of Continuous Internal Assessment

• Question Paper Pattern for Internal examination for all core and Elective papers.

Max.Marks:25 2Hrs.

Time:

S.No.	Part	Туре	Marks
1	Α	6*1 Marks=6Multiple Choice Questions Q.No.1 to 6	6
2	B	2*4 Marks=8 (Either or Pattern) Q.No. 7 and 8	8

3	С	2*8 Marks=16 (Either or Pattern) Q.No. 9 and 10	16
	·	Total Marks	30

• Question Paper Pattern for External examination for all coursepapers.

Max.Marks:75

Time:

S.No.	Part	Туре	Marks
1	Α	10*1 Marks=10	10
		Multiple Choice Questions (MCQs): Two questions from each	
		Unit	
2	В	5*7=35	35
		Two questions from each Unit with Internal Choice (either / or)	
3	С	3*10=30	30
		Open Choice: Any three questions out of 5 : One question from each unit	
		Total Marks	75

* Minimum credits required to pass: 90

• ProjectReport

A student should select a topic for the Project Work at the end of the third semester itself and submit the Project Report at the end of the fourth semester. The Project Report shall not exceed 75 typed pages in Times New Roman font with 1.5 lines space.

• ProjectEvaluation

There is a Viva Voce Examination for Project Work. The Guide and an External Examiner shall evaluate and conduct the Viva Voce Examination.

PROJECT WORK

The ratio of marks for Internal and External Examination is 25:75 THE INTERNAL COMPONENTS OF PROJECTS

Components	Semester Examination
Review	15

Regularity	10
Total	25

EXTERNAL VALUATION OF PROJECT WORK

Components	Marks
Project Report	50
External Viva Voce	25
Total	75

M.SC MATHEMATICS SYLLABUS 2022 ONWARDS

3. Conversion of Marks to Grade Points and Letter Grade (Performance in aCourse/Paper)

Range of	Grade Points	Letter Grade	Description
Marks			
90 - 100	9.0 - 10.0	0	Outstanding
80-89	8.0 - 8.9	D+	Excellent
75-79	7.5 - 7.9	D	Distinction
70-74	7.0 - 7.4	A+	Very Good
60-69	6.0 - 6.9	А	Good
50-59	5.0 - 5.9	В	Average
00-49	0.0	U	Re-appear
ABSENT	0.0	AAA	ABSENT

4. Attendance

Students must have earned 75% of attendance in each course for appearing for the examination. Students with 71% to 74% of attendance must apply for condonation in the Prescribed Form with prescribed fee. Students with 65% to 70% of attendance must apply for condonation in the Prescribed Form with the prescribed fee along with the Medical Certificate. Students with attendance lesser than 65% are not eligible to appear for the examination and they shall re-do the course with the prior permission of the Head of the Department, Principal and the Registrar of the University.

5. Any OtherInformation

In addition to the abovementioned regulations, any other common regulations pertaining to the PG Programmes are also applicable for this Programme.

DEPARTMENT OF MATHEMATICS M.Sc. Mathematics

(For the students admitted during the academic year 2022 – 2023 onwards)

S.No.	Course	Title of the Course Credits H		Hour	Maximum Marks			
	Code		creuns	Theory	Prac tical	CIA	ESE	Total
		FIRST	SEMES	FER				
1		Core Paper I:Abstract Algebra	5	6	-	25	75	100
2		Core Paper II: Real Analysis	5	6	-	25	75	100
3		Core Paper III: Ordinary Differential Equations	5	5 6 -		25	75	100
4		Core Paper IV: Computer Oriented Numerical Methods	5	5 6 -		25	75	100
5	5 Elective-I Graph Theory / Neural Networks		4	6	-	25	75	100
		Total	24	30	-	125	375	500
		SECON) SEME	STER	1			
6		Core Paper V: Linear Algebra	5	6	-	25	75	100
7		Core Paper VI: Complex Analysis	5	6	-	25	75	100
8		Core Paper VII: Partial Differential Equations	5	6	-	25	75	100
9		Core Paper VIII: Optimization Techniques	5	5 6		25	75	100
10		Elective-II : Fuzzy Logic and Fuzzy sets / Magnetohydrodynamics	4	6	-	25	75	100
		Total	24	30	-	125	375	500
		THIRD SI	EMESTE	CR			1	
11		Core Paper IX: Topology	5	6		25	75	100
		1 1 07						

12	Core Paper X: Fluid Dynamics	5	6		25	75	100
13	Core Paper XI: Differential Geometry	4	6	-	25	75	100
14	Core Paper XII: Programming in Python - Theory	4	4	-	25	75	100
15	Core Practical-I: Programming in Python - Practical	2	-	2	40	60	100
16	Elective III: Mathematical Statistics / Number Theory	4	6	-	25	75	100
	FOURTI	H SEME	STER				
17	Core Paper XIII: Functional Analysis	5	6	-	25	75	100
18	Core Paper XIV: Measure Theory	5	6	-	25	75	100
19	Elective-IV Elements of Stochastic Process / Control theory	4	6	-	25	75	100
20	Core Paper XV: Project	4	12	-	25	75	100
	Total	18	30	-	100	300	400
	Grand Total	90	116	4	500	1500	2000

Note:

CIA – ContinuousInternalAssessment

ESE – End of SemesterExaminations

Cour	rse code		Core Paper I: ABSTRACT ALGEBRA	L	Т	Р	С
Seme	ester-I			6	0	0	5
Cour	rse Objec	tives:		_L			
The 1	main obje	ctives of th	is course are to:				
1. 2.	To provid To introd ofpolynoi	le deep kno uce Galois nial equatio	wledge about various algebraicstructures. Theory and to see its application to the solvability ons byradicals.				
Expe	ected Cou	Irse Outco	nes:				
On	the succes	ssful compl	etion of the course, student will be able to:				
1	Underst	and Sylow	s theorem and its applications			K	3
2	Formul	ate some sp	ecial types of rings and their properties.			K	6
3	Acquire	e knowledg	e on extension fields and roots of polynomials			K	4
4	Analyz	e the eleme	nts of Galois theory and Galois Groups over the ration	als		K	4
5	Underst	tand the bas	ic concepts of solvability by radicals and finite fields.			K	2
K1	- Remem	ber; K2 - U	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 -	Creat	e	
Uni	t:1	·:	Group Theory		18	iour	S
And	other Court	nting Princi	ple, Sylow's Theorem: 1st, 2nd and 3rd parts of Sylov	v's Ih	leore	ms –	
uou							
Uni	t:2		Group Theory (contd) and Ring Theory		18	nour	S
Dire	ect Produc	cts: Externa	l and Internal direct Products, Euclidean Rings, A Par	ticula	r Euc	lidea	ın
Ring	gs, Polyno	omial rings.	· · · · · · · · · · · · · · · · · · ·				
T T •					101		
	U.S	overetica	king ineory (conta) and Fields	1:++:	18 field		S
POL	iynonnais	over ration	ai neius – extension neius – roots or porynomiais – sp	mung	g nelo	18.	
Uni	it:4		Fields (contd)		18	nour	S

More about r extension - G	oots – simple extension – fixed fields – symmetric rational func alois group – fundamental theorem of Galois theory.	tions – normal
Unit:5	Fields (contd) and Selected Topics	18hours
Solvability by - Finite fields	y radicals: Solvable group – the commutator subgroup – Solvab	ility by radicals
	Total Lecture hours	90hours

Te	ext Book(s)
1	I.N. Herstein, Topics in Algebra, Secnd Edition, John Wiley and Sons, New York, 1975.
	UNITI: Chapter2 : Sections 2.11,2.12
	UNITII: Chapter2 : Section2.13
	Chapter3 : Sections 3.7-3.9
	UNITIII: Chapter3 : Section3.10
	Chapter 5 : Sections 5.1,5.3
	UNITIV: Chapter 5 : Sections 5.5,5.6 UNIT
	V: Chapter 5 : Section 5.7
	Chapter / : Section /.1
-	
Re	eference Books
1	Serge Lang, Algebra, Third Edition, Addison-Wesley, Mass, 1993.
2	John B. Fraleigh, A First Course in Abstract Algebra, Addison Wesley, Mass, 1982.
3	M. Artin, Algebra, Prentice-Hall of India, New Delhi, 1991.
4	V. K. Khanna and S.K. Bhambri, A Course in Abstract Algebra, Vikas Publishing House Pvt Limited, 1993.
Rel	ated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/content/storage2/111/106/111106113/MP4/mod08lec44.mp4
2	https://nptel.ac.in/content/storage2/111/106/111106113/MP4/mod08lec45.mp4
3	https://nptel.ac.in/content/storage2/111/106/111106131/MP4/mod08lec39.mp4
4	https://nptel.ac.in/content/storage2/111/106/111106131/MP4/mod08lec42.mp4

Mapping with Programme Outcomes

COs	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	P
											0
											1
											0
CO1		Μ	L	L	L	Μ	S	L	S	Μ	Μ
CO2		S	S	Μ	L	L	S	L	S	Μ	S
CO3		Μ	L	S	Μ	S	Μ	Μ	L	L	S
CO4		Μ	L	S	S	S	Μ	Μ	L	L	S
CO5		L	Μ	Μ	S	Μ	L	S	Μ	S	Μ

Г

Т

Course code		Core Paper II: REAL ANALYSIS	L	Т	Р	С
Semester-I			6	0	0	5
Course Obj	ectives:					
The main ob	ectives of this	course are to:				
1.	To convey c	oncepts of real valued functions indetail.				
2.	To provide t	he deep knowledge about sequences andseries.				
3.	To make a c	lear difference between differentiability and continuity				
4.	To know sor	ne basictheorems.				
Expected Co	ourse Outcom	les:				
On the succ	essful comple	tion of the course, student will be able to:				
1	Apply the Rier	nann Stieltjes integral and bring its properties and ves.]	K3
2	Remembering	of sequences and series along with its properties]	K1
3	Analyze the co of implicit fund	oncept of linear transformation and find the extreme values ctions.]	K4
4	Jnderstand the	e fundamental concept of Lebesgue measure.]	K2
5	Evaluate the co	omplex integration and the benefits of Lebesgue Integral]	K5
K1 - Reme	nber; K2 - Un	derstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 -	Crea	ate		
Unit:1		Countable and Uncountable sets		181	iou	rs

Т

equivaler examples -Compac propertie	acc relation with theorems and examples- Metric spaces –Euclidean Basic definitions of metric spaces and its examples – Open and clos t sets- definition of compact sets with union and intersection theorems s- k- cell is compact-Weierstrasstheorem	spaces and its
Unit:2	Perfect sets	18hours
Introduct Connecte sequence - Upper a harmonic tests and	ion about Perfect sets – definition of perfect set and cantor set and its the ed sets-real line is connected property theorem- Convergent and dive s in a metric space theorems –Subsequences - Cauchy sequences and co and lower limits - Some special sequences theorems and examples– S e series and geometric series examples - The number e - The root an its examples	eorem- ergence omplete eries – id ratio
[]nit•3	Power series	18hours
parts – condition multiplic	partial summation formula-Leibnitz theorem-absolute converge ally convergent - definition and theorems and its examples-addition ation of series with problems – Rearrangements	ence – on and
ET . •4 . 4		
Unit:4	Continuity function:	18hours
Continuit Continuit theorems of a real Mean val	Continuity function: y: Limits of functions - Continuous functions and their propertie - continuity and compactness- uniform continuous-theorems -The der function with properties and examples-Mean value theorems and gene ue theorem- The continuity of derivatives - L"Hospital" rule	18hours es and vivative ralized
Unit:4 Continuit theorems of a real Mean val	Continuity function: cy: Limits of functions - Continuous functions and their properties - continuity and compactness- uniform continuous-theorems - The der function with properties and examples-Mean value theorems and gene ue theorem- The continuity of derivatives - L"Hospital" rule The Riemann-Stieltjes Integral	18hours es and ivative oralized 18hours
Unit:4 Continuit theorems of a real Mean val Unit:5 Introduc definition Riemann and differ of vector	Continuity function: cy: Limits of functions - Continuous functions and their properties - continuity and compactness- uniform continuous-theorems -The der function with properties and examples-Mean value theorems and gene ue theorem- The continuity of derivatives - L"Hospital" rule The Riemann-Stieltjes Integral tion of Riemann-Stieltjes Integral: Definition and existence of the integral of refinement -upper and lower partition theorems-Properties -Stieltjes Integral and its theorems- definition of unit step function-Integration –fundamental theorem of calculus- integration by parts- Integral	18hours es and ivative ralized 18hours egral – of the gration gration

1	 1.Walter Rudin, "Principles of Mathematical Analysis", 3rd Edition, McGraw –Hill International Book Company, Singapore,(1982). Units I: Chapter- 2: 2.1 to 2.42
	Unit II: Chapter- 2: 2.43 to 2.47 and Chapter -3:3.1 to 3.37
	Unit III: Chapter- 3: 3.38 to 3.58
	Unit IV: Chapter-4: 4.1 to 4.21 and Chapter -5: 5.1 to 5.13
	Unit V: Chapter- 6:6.1 to 6.23
D C	
Refere	nce Books
1	R. G. Bartle, Elements of Real Analysis, 2nd Edition, John Wily and Sons, New York, 1976.
2	S. Kumaresan , "Topology of Metric Spaces ", 2 nd Edition, Narosa Publishing House, 2011
3	S. Ponnusamy, "Foundations of Mathematical Analysis", Springer Birkhauser, 2012
4	G.F.Simmons, "Introduction to Topology and Modern Analysis", McGraw –Hill, New Delhi,2004.
Related	l Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://www.youtube.com/watch?v=DO0Dzz07DNI
2	https://nptel.ac.in/courses/111/101/111101100/
3	https://www.youtube.com/watch?v=Y5yEMXZnzYw
4	https://youtu.be/msIZz8ydzcM

Mapping with	Program	mme Ou	tcomes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	L	S	S	Μ	S	Μ	S	S	S	S
CO3	S	Μ	Μ	L	S	S	S	L	L	L
CO3	L	Μ	S	L	M	Μ	Μ	S	Μ	S
CO4	L	Μ	S	L	M	S	S	S	Μ	Μ
CO5	Μ	L	S	Μ	S	L	Μ	Μ	L	L

Course	code	Core Paper III: ORDINARY DIFFERENTIAL EQUATIONS	L	Т	Р	C
Semeste	er-I		6	0	0	5
Course	Objectives:					
The mai	n objectives of th	is course are to:				
1. Stu 2. Un exi Wr 3. Ena and	dy Solutions of L derstand and able stenceand unique onskianetc., ables the students interpreting physic	inear differential equations with constant and variable to apply various theoretical ideas that underlined in ness theorems, Linear independence and dependence, to develop the strong background on modeling, formu sicalproblems.	coeffi lating	cien	ts. lving	
Expecte	d Course Outco	mes:				
On the	successful compl	etion of the course, student will be able to:				
1	Recall the type equations with	es of linear homogeneous equations of second order constant coefficients and apply the method to solve.			K1	

2	Analyze non-homogeneous ODE using the method of undermined	K4
-	coefficients and annihilator method to solve the same.	
3	Understand and Apply the theorems on Initial value problem to	K2 &
C	ordinary differential equations.	K3
4	Comprehend the Euler equations, the Bessel's equation and Regular,	K5
	Singular points at infinity and to evaluate.	
5	Identify the research problem where differential equation can be used t model the problem.	o K6
K1 - Re	emember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K	6 - Create
TT 1 1		
Unit:1	Linear Equations with Constant Coefficients	hours
Introduc	ion - Second order homogenous equations - Initial value problem for sec	cond order
equation	s - Linear dependence and independence - A formula for Wronskian	
Unit:2	Linear Equations with Constant Coefficients (Contd)	18hours
The Nor	- homogenous equations of order two-homogenous and Non - homogen	ous equations of
order n	- Initial value problems for n th order equations- Annihilator method	d to solve non-
Homoge	nous equation.	
	1	
Unit:3	Linear Equations with Variable Coefficients	18hours
Initial	value problem - Existence and uniqueness theorem - The Wrons	kian and linear
independ	ence - Reduction of the order of a homogenous equation - The non- Homo	ogenous equation
- Homog	enous equations with analytic coefficients - The Legendreequations.	
Unit:4	Linear Equations with Regular Singular Points	18hours
The Eule The Bess	r equations - Second order equations with regular singular points - Except el equation – The Bessel equationcontd.	ptional cases -
1		

Unit:5	5	Existence and	18hours							
Equatio	ns with var	iable separated -	- Exact equation	ons - The method of successive	approximation - The					
Lipschi	tz Conditio	n - Convergence	of the success	ive approximation - Non-local e	existence of solutions					
- Appro	ximations a	and uniqueness o	f solutions.							
				Total Lecture hours	90hours					
Text H	Book(s)									
1	Earl A. Co	ddington, An Int	troduction to O	rdinary Differential Equations,	Prentice-Hall of					
	India Priva	ate Limited, New	v Delhi2008.							
		UNITI:	Chapter2	: Sections 2.1 –2.5.						
		UNITII:	Chapter2	: Sections 2.6 – 2.8,2.10,2.1	1.					
		UNITIII:	Chapter3	: Sections 3.1 – 3.8						
		UNITIV:	Chapter4	: Sections $4.1 - 4.4$, $4.6 - 4.8$	3					
		UNITV: Chapter5 : Sections 5.1 –5.8								

Refer	ence Books
1	Williams E. Boyce and Richard C. Diprima, Elementary Differential Equations and
	Boundary Value Problems, 10th edition, John Wiley and Sons, New York 2012.
2	S. G. Deo and V. Raghavendra, Ordinary Differential Equations and Stability Theory,
	Tata McGraw-Hill, New Delhi 1980.
3	George F. Simmons, Differential Equations with Application and Historical Notes, Tata
	McGraw Hill, New Delhi 1974.
Relate	ed Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/courses/111/104/111104031/#
2	https://nptel.ac.in/courses/122/107/122107037/

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	Μ	Μ	S	L	S	Μ	S	L
CO3	Μ	S	S	Μ	S	S	S	S	S	Μ
CO3	L	M	S	S	S	S	S	S	S	S
CO4	Μ	S	L	Μ	S	Μ	S	S	L	S
CO5	L	Μ	S	S	S	Μ	S	S	L	Μ

Cou	rse code	Core Paper IV: COMPUTER ORIENTED NUMERICAL METHODS	L	LT	Р	C				
Sen	Semester-I									
Course Objectives:										
The	main objectives	of this course are to:								
 To make the students understand solving Algebraic and Transcendentalequations. To know about how and when to use various interpolation function finding thevarious numerical differentiation and integration formulae and using them to solveproblems. 										
1. 2. 3.	To make the stur To know about I thevarious nume solveproblems. To understand th	lents understand solving Algebraic and Transcendentalequat ow and when to use various interpolation function finding rical differentiation and integration formulae and using them he methods of finding solution to the differential equations o	tion n to f va	s. riou	[isorc				

Expected	Course Outcomes:								
On the s	uccessful completion of the course, student will be able to:								
1	1 Solve problems in numerical differentiation and integration								
2	Solve system of equations using various methods.								
3	Apply various methods to find numerical solution of first and								
4	Explain the various methods for solving Boundary Value Problems and Characteristic Value Problems								
5	Understand the Explicit method and the Crank Nicolson method solving partial differential equations.	for K2							
K1 - Rei	member; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evalua	ate; K6 - Create							
Unit:1	Unit:1 Solution of Nonlinear Equations, Numerical Differentiation and Integration								
Solution Bairstow	of Nonlinear Equations : Newton's method – Convergence of Newton's Method for quadratic factors.	wton's method –							
Numeric order der Trapezoic	al Differentiation and Integration: Derivatives from Difference ivatives – Divided difference, Central-Difference formulas– Con lal rule – Romberg integration – Simpson'srules.	es tables – Higher nposite formula of							
Unit:2	Solution of System of Equations	18hours							
The Elin Matrix i Iteration	nination method – Gauss and Gauss Jordan methods – LU Decom nversion by Gauss-Jordan method – Methods of Iteration – Jacob – Relaxation method – Systems of Nonlinear equations.	position method – i and Gauss Seidal							
Unit:3	Solution of Ordinary Differential Equations	18hours							
Taylor s methods	series method – Euler and Modified Euler methods – Runge-kutta i – Milne's method – Adams Moulton method.	nethods – Multistep							
Unit:4	Boundary Value Problems and Characteristic Value Problems	18hours							
Г	The shooting method – solution through a set of equations – Deriva	tive boundary							
с р	onditions – Characteristic value problems – Eigen values of a matr ower method.	ix by Iteration – The							

Unit:5	Numerical Solution of Partial Differential Equations	18hours							
Representation as a difference equation – Laplace's equation on a rectangular region – Iterative									
methods for Lapla	methods for Laplace equation – The Poisson equation – Derivative boundary conditions – Solving								
the equation for tir	the equation for time-dependent heat flow (i) The Explicit method (ii) The Crank Nicolson method								
– solving the wave	equation by Finite Differences.								

	Total Lecture hours 90hours
Text B	ook(s)
1	Curtis F. Gerald, Patrick O. Wheatley, Applied Numerical Analysis, Fifth Edition, Addison Wesley, (1998).
D	
Refere	ace Books
1	S. C. Chapra and P. C. Raymond: Numerical Methods for Engineers, Tata McGraw
	Hill, New Delhi, 2000.
2	S.S. Sastry: Introductory methods of Numerical Analysis, Prentice Hall of India, New
	Delhi, 1998.
3	P. Kandasamy et al., Numerical Methods, S.Chand&Co.Ltd., New Delhi, 2003.
Relate	I Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/courses/111/107/111107105/
2	https://freevideolectures.com/course/3504/numerical-methods-of-ordinary-and-partial/1
3	https://www.classcentral.com/course/swayam-numerical-methods-for-engineers-14213

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	L	S	S	Μ	L	S	Μ	Μ
CO3	S	M	L	S	S	Μ	L	S	Μ	Μ
CO3	S	M	L	S	S	М	L	S	М	Μ
CO4	S	S	S	S	Μ	S	S	Μ	L	L
CO5	S	S	S	S	Μ	S	S	Μ	L	L

Course code	Elective -I:GRAPH THEORY	L	Т	Р	С
Semester-I		6	0	0	4
Course Objectives:		•	•	•	

The main objectives of this course are to:

- 1. To provide deep knowledge about fundamental concepts of Graphs and Trees.
- 2. To introduce Matchings, Coloring, and Chromatic Number and to see its application in higher orderthinking.

Expected	Course Outcomes:							
On the s	uccessful completion of the	he course, student will be able to:						
1	Understand the basic co	oncepts of Graphs and Trees	K2					
2	Analyze vertex and edg	e connectivity concepts	K4					
3	Acquire knowledge in Matching and Colourings							
4	Apply Chromatic Num	ber	К3					
5	Determining the planar	, non-planar, and directed graphs	K3					
K1 - Re	nember; K2 - Understand	l; K3 - Apply; K4 - Analyze; K5 - Evaluate	e; K6 – Create					
Unit:1	Gra	aphs, Subgraphs and Trees	18 hours					
Adjacer Trees: '	cy matrices, Subgraphs – rees – Cut edges and Bor	Vertex Degrees – paths and Connection – onds – cut vertices – Cayley's formula.	Cycles.					
Unit:2	Connectivit	y, Euler tours and Hamilton Cycles	18 hours					
Connec Euler to	ivity: Connectivity – Blo urs and Hamilton Cycle	ecks. es: Euler tours - Hamilton Cycles.						
Unit:3	Match	ings and Edge Colourings	18 hours					
Matchi	gs: Matchings coverings	in Bipartite Graphs – Perfect Matchings.						
Edge co	lourings: Edge chromatic	e number – Vizing's theorem.						
∐nit•4	Independent se	ets Cliques and Vertex Colourings	18 hours					
Indono	dont sots Cliques: Inder	pandant sats Ramsay's theorem	10 1100115					
Vertex Polynor	Colourings: Chromatic N ials – Girth and Chromat	fumber – Brook's Theorem – Hajo's Conjection in the sets of the se	cture – Chromatic					
Unit:5	Planar G	raphs and Directed Graphs	18 hours					
<u>Planar</u>	Graphs: Plane and plar	nar Graphs – Dual Graphs – Euler's for	mula – Brides –					
Kuratov Conject Directe Simple	rski's theorem (Proof on are. I Graphs: Directed Graph problems in the exercise of	hitted) – The Five Colour Theorem and hs. f all units can also be included	the Four Colour					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								

Text Book(s)

1	J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American								
	Elsevier Company Inc., New York, 1976.								
	Unit-I: Sections: $1.1 - 1.7, 2.1 - 2.4$								
	Unit-II: Sections: $3.1 - 3.2, 4.1 - 4.2$								
	Unit-III: Sections: $5.1 - 5.3, 6.1 - 6.2$								
	Unit-IV: Sections: $7.1 - 7.2, 8.1 - 8.5$								
	Unit-V: Sections: 9.1 – 9.6,10.1								
Refere	ence Books								
1	Frank Harary, Graph Theory, Addison-Wesley, Reading, 1969.								
2	M.Murugan, Graph Theory and Algorithms, Second Edition, Muthali Publishing								
	House, Chennai, 2018.								
3	K. R. Parthasarathy, Basic Graph Theory, Tata McGraw Hill, New Delhi, 1994.								
4	Douglas B. West, Introduction to Graph Theory, Prentice Hall of India, 2001.								
Relate	d Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https://nptel.ac.in/courses/111/106/111106050/								
2	https://nptel.ac.in/courses/106/108/106108054/								

Mapping with Programme Outcomes											
COs	POs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	PO9	PO
											10
CO1		L	Μ	Μ	L	Μ	Μ	Μ	S	Μ	S
CO2		Μ	S	S	Μ	Μ	L	L	S	Μ	S
CO3		S	S	S	Μ	L	L	L	Μ	L	Μ
CO4		L	M	S	S	Μ	L	Μ	S	Μ	Μ
CO5		Μ	L	S	Μ	Μ	Μ	Μ	S	Μ	S

Cou	ırse code		Elective -I:NEURAL NETWORKS	L	Т	Р	С		
Sem	ester-I			6	0	0	4		
Cou	rse Objec	tives:							
The	main objec	ctives of thi	s course are to:						
1.	To know	the main fur	ndamental principles and techniques of neural networ	k syste	ms ar	ıd			
	investigat	e the princip	pal neural network models and applications.						
2.	Acquire i	n-depth kno	whedge in Non-lineardynamics						
3.	Apply net	Iral network	to classification and generalization problems.						
Exp	ected Cou	rse Outcon	nes:						
On	the succes	sful comple	tion of the course, student will be able to:						
1	Understa	nd and anal	yze different neutron network models			K	2		
						&	K4		
2	Understa	nd the basic	e ideas behind most common learning algorithms for	multila	yer	K	2		
	perceptio	ns, radial-b	asis function networks.						
3	Describe	Hebb rule a	and analyze back propagation algorithm with example	es.		K	4		
4	Study co	nvergence a	nd generalization and implement common learning a	lgorith	m.	K	6		
5 Study directional derivatives and necessary conditions for optimality and to									
U	evaluate	quadratic fu	inctions.				0		
K1	- Rememb	ber; <b>K2</b> - Ui	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	K6 - (	Create				
Un	it:1	1	Neuron Model and Network Architectures		18	hou	rs		
Ma Not	thematical	Neuron Mo	odel- Network Architectures- Perceptron-Hamming N	letworl	k- Hoj	pfiel	d		
INC	twork-Lea	ming Kules	·						
Un	it:2		Perceptron Architectures		18	shou	rs		
Per	ceptron A	chitectures	and Learning Rule with Proof of Convergence. Supe	rvised	Hebbi	an			
Lea	arning -Lin	ear Associa	tor.						
TT	••••			1		01			
Un Th	IL:J	la Peauda in	Supervised Hebbian Learning	opegat	lion	. <b>8</b> no	urs		
Mu	ltilayer Pe	rceptrons.	TVerse Rule- variations of fredoran Learning-Dack IT	opagat	- 1011				
		r							
Un	Unit:4 Back Propagation 18h								
Bac	ck propaga	tion Algorit	hm-Convergence and Generalization - Performances	Surfac	es an	d			
Op	Optimum Points-Taylor series.								
Unit-5 Performance Surfaces and Performance Ontimizations 19 hours									
Dir	rectional D	erivatives -	Minima-Necessary Conditions for Optimility-Ouadr	atic Fu	nction	10 1	Juls		
Per	Performance Optimizations-Steepest Descent-Newton's Method-Conjugate Gradient.								
To	Total Lecture hours   90 hours								

## Text Book(s)

Martin T. Hagan, Howard B. Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi,2002.

# **Reference Books**

- 1 James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003.
- 2 Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.

## Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1 https://nptel.ac.in/courses/117/105/117105084/
- 2 https://nptel.ac.in/courses/106/106/106106184/

Mapping with Programme Outcomes												
COs	POs	<b>PO1</b>	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10	
CO1		S	L	Μ	Μ	Μ	L	Μ	S	S	Μ	
CO2		S	Μ	Μ	L	L	L	L	Μ	Μ	Μ	
CO3		L	Μ	Μ	S	L	L	L	Μ	Μ	Μ	
<b>CO4</b>		Μ	Μ	L	L	Μ	L	L	L	Μ	S	
CO5		M	M	M	L	L	L	L	S	Μ	Μ	

Cour	se code		Core Paper V:LINEAR ALGEBRA	L	Т	Р	С					
Seme	ster-II			6	0	0	5					
Cour	se Objectives	:										
The n	nain objectives	s of this cou	irse are to:									
1. I	Develop a stro	ng foundati	on in linear algebra that provide a basic for advanceds	studies	•							
2. 5	Study of Linea	r Transform	nations, Algebra of Polynomials, Invariant space and	their								
F	properties.											
3. (	Give particular	attention to	o canonical forms of linear transformations, diagonali	zations	s of							
	inear transform	nations, ma	trices and determinants.									
Expe	Expected Course Outcomes:											
On t	he successful	completion	of the course, student will be able to:									
1 Understand the basic concepts of Linear transformations characteristic roots												
1	and matrice	es of linear	transformation and its applications.	.0		13						
2	Explain about the algebra of polynomials, polynomial ideals and											
	prime factorization of a polynomial.											
3	Understand the basic concepts of determinants and its additional properties.											
4	Recognize the concepts of Invariant subspaces and diagonalization process.											
5 Analyze canonical Form, Jordan Form and Rational canonical Form.												
K1 -	Remember; <b>H</b>	<b>K2</b> - Unders	tand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 -	- Create	e							
Unit	t:1		Linear Transformations	18	Sho	our						
					S							
Line	ar transformat	tions – Ison	horphism of vector spaces – Representations of linear									
trans	siormations by	matrices –	Linear functionals.									
Unit	t:2		Algebra of Polynomials		18	Sho	mr					
Cint	_		ingeoru or i orynomius		s	,						
The	algebra of pol	vnomials –l	Polynomial ideals - The prime factorization of a polyn	nomial	-							
Dete	erminant funct	ions.	, i i i i i i i i i i i i i i i i i i i									
		•										
Unit	t:3		Determinants		18	Sho	ur					
					S							
Pern	nutations and t	he uniquen	ess of determinants – Classical adjoint of a (square) m	atrix –	Inv	ers	e					
of ar	n invertible ma	atrix using d	ieterminants – Characteristic values – Annihilating po	olynom	ials	•						
Unit	t <b>:4</b>		Diagonalization		18	Sho	our					
					S		-					
Inva	riant subspace	s – Simulta	neous triangulations – Simultaneous diagonalization	– Direc	ct-si	ım						
deco	decompositions - Invariant direct sums - Primary decomposition theorem.											

Unit:5	The Rational and Jordan Forms	18hour						
		S						
Cyclic subspaces – Cyclic decompositions theorem (Statement only) – Generalized Cayley –								
Hamilton theorem - Rational forms – Jordan forms.								

				<b>Total Lecture hours</b>	90hour						
					S						
	• / \										
Text B	ook(s)										
1	Kenneth N	A Hoffman and R	ay Kunze, Line	ear Algebra, Second Edition, Pr	entice-Hall of						
	India Pvt.	dia Pvt. Ltd, New Delhi, 2013.									
		UNITI:	Chapter3	: Sections3.1-3.5							
		UNITII:	Chapter4	: Sections 4.1, 4.2, 4.4,4.5							
			Chapter5	: Sections 5.1,5.2							
		UNITIII:	Chapter5	: Sections 5.3,5.4							
			Chapter6	: Sections6.1-6.3							
		UNITIV:	Chapter6	: Sections 6.4 -6.8							
		UNITV:	Chapter7	: Sections 7.1 –7.3							
Refere	nce Books										
1	M. Artin,	Algebra, Prentice	-Hall of India	Pvt. Ltd., 2005.							
2	S. H. Fried	dberg, A. J. Insel	and L. E. Spen	ce, Linear Algebra, Fourth Edit	ion, Prentice-Hall						
	of India P	vt. Ltd., 2009.	-	-							
3	I. N. Herst	tein, Topics in Al	gebra, Second	Edition, Wiley Eastern Ltd, Nev	w Delhi, 2013.						
Relate	d Online C	ontents [MOOC	, SWAYAM, I	NPTEL, Websites etc.]							
1	https://ww	ww.khanacademy.	org/math/linea	r-algebra/vectors-and-spaces							
2	https://npt	el.ac.in/courses/1	11/106/111100	5051/							

Mapping with Programme Outcomes											
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	<b>PO10</b>	
CO1	S	S	Μ	L	Μ	S	S	S	Μ	Μ	
CO2	М	S	S	Μ	L	S	S	S	Μ	Μ	
CO3	S	S	Μ	L	Μ	S	S	S	Μ	Μ	
CO4	L	Μ	L	S	Μ	S	Μ	Μ	L	L	
CO5	Μ	S	S	Μ	L	S	S	S	Μ	Μ	

Semester-II       6       0       5         Course Objectives:       The main objectives of this course are to:       1.       Define and recognize the basic properties of the complexnumbers         2.       Enable the students to the differentiability of complex functions and the results related onthe study.       3.       Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definiteintegral.         Expected Course Outcomes:       0       0       K1         0       the successful completion of the course, student will be able to:       1         1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral formula on open sets on the plane and k2       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K3         4       Analytic Function.       K4         5       Study and Understand periodic function, Weierstrass@       K6         5       Study and Understand periodic function, Weierstrass@       K6         6       Integral Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.       Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives. <th>Course</th> <th>e code</th> <th></th> <th>Core Paper VI: COMPLEX ANALYSIS</th> <th>L</th> <th>Т</th> <th>Р</th> <th>С</th>	Course	e code		Core Paper VI: COMPLEX ANALYSIS	L	Т	Р	С				
Course Objectives:         The main objectives of this course are to:         1. Define and recognize the basic properties of the complexnumbers         2. Enable the students to the differentiability of complex functions and the results related onthe study.         3. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definiteintegral. <b>Expected Course Outcomes:</b> On the successful completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral Formula on open sets on the plane and K2 know about poles , residues andsingularities.       K3         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K4         4       Analyze and represent the sum function of a power series as an Analytic Function.       K6         5       Study and Understand periodic function, Weierstrass@       K6         function and its applications. <b>Unit:1</b> Complex Integration and Cauchy's Integral         Isometal Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.         <td colspan="</td> <td>Semes</td> <td>ter-II</td> <td></td> <td></td> <td>6</td> <td>0</td> <td>0</td> <td>5</td>	Semes	ter-II			6	0	0	5				
The main objectives of this course are to:         1. Define and recognize the basic properties of the complexnumbers         2. Enable the students to the differentiability of complex functions and the results related onthe study.         3. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definite integral. <b>Expected Course Outcomes:</b> On the successful completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral Formula on open sets on the plane and k2 know about poles , residues and singularities.       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K4         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass \$\$\$\$\$ function and its applications.       K6         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.         · · · · · · · · · · · · · · · · · · ·	Course	e Objectiv	/es:		•							
1. Define and recognize the basic properties of the complexnumbers         2. Enable the students to the differentiability of complex functions and the results related onthe study.         3. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definite integral. <b>Expected Course Outcomes:</b> On the successful completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral Formula on open sets on the plane and k2 know about poles , residues and singularities.       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       & K4         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass \$20       K6         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Evaluate; K6 - Create         Unit:1       Complex Integration and Cauchy's Integral Isole Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.       .         Unit:1       Complex Integration and Cauchy's Theorem in a Disk - Cauchy's Integral formula – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Cauchy's Theorem in a Disk - Cauchy's Integr	The ma	ain objecti	ves of this o	course are to:								
3. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definiteintegral.         Expected Course Outcomes:         On the successful completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.         2       Understand Cauchy's Integral Formula on open sets on the plane and know about poles , residues and singularities.         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K3         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass øp function and its applications.       K6         K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create       Unit:1       Complex Integration and Cauchy's Integral       18hours         Unit:1       Complex Integrals – Rectifiable Arcs - Line Integral formula – Higher derivatives.         .         Unit:1       Local Properties of Analytic Functions	1. D 2. En or	efine and the study.	recognize the students to t	he basic properties of the complexnumbers he differentiability of complex functions and the r	esul	ts re	lated	C				
Expected Course Outcomes:         On the successful completion of the course, student will be able to:       Image: Completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral Formula on open sets on the plane and know about poles , residues and singularities.       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K3         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass \$\varphi\$       K6         function and its applications.       K1       Complex Integration and Cauchy's Integral       18hours         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       .       .         .	3. Study Cauchy's integral formula, local properties of analytic functions, general form of Cauchy's theorem and evaluation of definiteintegral.											
On the successful completion of the course, student will be able to:         1       Remembering the concept of Analytic function and as a mapping on the plane.         2       Understand Cauchy's Integral Formula on open sets on the plane and know about poles , residues and singularities.         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.         4       Analyze and represent the sum function of a power series as an Analytic Function.         5       Study and Understand periodic function, Weierstrass &?         6       K1         Complex Integration and Cauchy's Integral         Unit:1         Complex Integration and Cauchy's Integral         Unit:1         Complex Integration and Cauchy's Integral         Integration and Cauchy's Theorem in a Disk - Cauchy's Integral formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.         .	Expected Course Outcomes:											
1       Remembering the concept of Analytic function and as a mapping on the plane.       K1         2       Understand Cauchy's Integral Formula on open sets on the plane and know about poles , residues and singularities.       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K3         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass Ø       K6         function and its applications.       K4       K6         K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create       Vinit:1       Complex Integration and Cauchy's Integral formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula - Higher derivatives.       Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.         .       .       .       18 hours	On th	e successf	ul completi	on of the course, student will be able to:								
2       Understand Cauchy's Integral Formula on open sets on the plane and know about poles , residues and singularities.       K2         3       Apply the Cauchy's integral formula in residue theorems and in evaluation of definite integrals.       K3         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass $\wp$ K6         function and its applications.       K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create         Unit:1       Complex Integration and Cauchy's Integral Ishours         Formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula – Higher derivatives.         Unit:1       Local Properties of Analytic Functions	1	1Remembering the concept of Analytic function and as a mapping on the plane.K1										
3       Apply the Cauchy's integral formula in residue theorems and in       K3         4       Analyze and represent the sum function of a power series as an       K5         5       Study and Understand periodic function, Weierstrass@       K6         5       Study and Understand periodic function, Weierstrass@       K6         6       function and its applications.       K6         K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create       I8hours         Formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       .         Local Properties of Analytic Functions	2	Understand Cauchy's Integral Formula on open sets on the plane and K2 know about poles , residues and singularities.										
evaluation of definite integrals.       & K4         4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass@       K6         function and its applications.       K6 <b>K1</b> - Remember; <b>K2</b> - Understand; <b>K3</b> - Apply; <b>K4</b> - Analyze; <b>K5</b> - Evaluate; <b>K6</b> - Create <b>Unit:1 Complex Integration and Cauchy's Integral Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.         .   </b>	3	Apply th	he Cauchy's	s integral formula in residue theorems and in			K3					
4       Analyze and represent the sum function of a power series as an Analytic Function.       K5         5       Study and Understand periodic function, Weierstrass Ø function and its applications.       K6         K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create         Unit:1       Complex Integration and Cauchy's Integral Formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       18 hours         Local Properties of Analytic Functions		evaluati	on of defini	te integrals.			& K	4				
5       Study and Understand periodic function, Weierstrass        K6         function and its applications.       K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create         Unit:1       Complex Integration and Cauchy's Integral Formula         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs- Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.         Local Properties of Analytic Functions	4	Analyze Analytic	e and repres c Function.	ent the sum function of a power series as an			K5					
K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create         Unit:1       Complex Integration and Cauchy's Integral       18hours         Formula       Isometry       18hours         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions       of Arcs – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's         Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       18 hours	5	Study an function	nd Understant and its app	and periodic function, Weierstrass <i>p</i> olications.			K6					
Unit:1       Complex Integration and Cauchy's Integral Formula       18hours         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions of Arcs– Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       18 hours	<b>K1 -</b> 1	Remember	r; <b>K2</b> - Und	erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate	e; <b>K</b>	6 - (	Creat	e				
Unit:1       Complex Integration and Cauchy's Integral       18hours         Formula       Formula       18hours         Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions       of Arcs – Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's         Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.       .         .       .	<b>.</b>	_	~			10						
Fundamental Theorems: LineIntegrals – Rectifiable Arcs - Line Integrals as Functions         of Arcs– Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's         Integral formula: The index of a point with respect to a closed curve – The Integral formula –         Higher derivatives.         .	Unit:	1	Comp Formı	lex Integration and Cauchy's Integral 11a		18	hour	S				
of Arcs– Cauchy's Theorem for a Rectangle – Cauchy's Theorem in a Disk - Cauchy's Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.		Fundam	ental Theor	ems: LineIntegrals – Rectifiable Arcs - Line Integ	grals	as F	Funct	ions				
Integral formula: The index of a point with respect to a closed curve – The Integral formula – Higher derivatives.	of Ar	cs– Cauch	y's Theorei	m for a Rectangle – Cauchy's Theorem in a Disk -	- Cai	ıchy	's					
Higher derivatives.	Integr	ral formula	a: The index	x of a point with respect to a closed curve – The In	ntegi	al fo	ormu	la –				
Unit-2 Local Properties of Analytic Functions 19 hours	Higher derivatives.											
Unit-2 Local Properties of Analytic Functions 19 hours												
	Unit:	2	Local	Properties of Analytic Functions		1	<b>8 ho</b>	urs				

Local Properties of Analytic Functions: Removable Singularities - Taylor's theorem –								
Zeros and poles – The Local Mapping – The Maximum principle.								
Unit:3	The Calculus of Residues and Harmonic Functions	18 hours						
The Calc	ulus of Residues: The Residue theorem - The Argum	ent Principle –						
Evaluation of De	efinite Integrals - Harmonic functions: Definitions and Ba	sic Properties –						
The Mean - value Property – Poisson's formula – Schwarz's Theorem.								

Unit:4	4	Series a	and Product D	evelopments, Partial fractions and	18hours				
				Factorization					
		Power	Series Expansi	ions: Weierstrass's Theorem – The Tayl	or Series – The				
	Laurent	Series - P	artial fractions	and Factorization: Partial Fractions - In	nfinite Products.				
Unit:	5		Ca	nonical Products	18hours				
	Canonical I	Products	- The Riemann	Mapping theorem : Statement and Prod	of - The Schwarz				
– Chris	toffel Form	ula – A c	loser look at ha	armonic functions: Functions with Mean	1 -value Property				
- Harna	ck's Princip	ole.							
	-								
				Total Lecture hours	90 hours				
Text l	Book(s)								
1	L. V. Ah	lfors, Cor	nplex Analysis	, McGraw Hill Education (India)					
	Pvt	t. Ltd, 201	3,.	, , , , , , , , , , , , , , , , , , ,					
	U	NITI:	Chapter4	: Sections $1.1 - 1.5$					
			Chapter4	ter4 : Sections 2.1 – 2.3, 3.1, 3.2 and 3.4					
	UN	ITII:	Chapter4	: Sections $3.1 - 3.4$					
	UN	ITIII:	Chapter4	: Sections $5.1 - 5.3$ , $6.1 - 6.4$					
	UN	VITIV:	Chapter5	: Sections $1.1 - 1.3, 2.1, 2.2$					
	UN	NITV:	Chapter5	: Section 2.3					
			Chapter6	: Sections 1.1, 2.2, 3.1, 3.2					
	1								
Refer	ence Books	6							
1	S. Ponnu	samy and	H. Silverman,	A Complex Variable with applications,	, Birkhauser,				
	Boston, 2	2006.							
2	Karunaka	aran <mark>V, C</mark>	omplex Analys	sis, Narosa Publishing House Pvt. Ltd, S	Second Edition,				
	New Del	hi, 2006.							
3	Roopkun	nar R, Co	mplex Analysi	s, Dorling Kinderley Pvt. Ltd, New De	lhi, 2015.				
	-		•	-					

Relate	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https://nptel.ac.in/courses/111/103/111103070/							
2	https://nptel.ac.in/courses/111/106/111106084/							
3	https://youtu.be/sJcpfmF5oHo							

Mappi	Mapping with Programme Outcomes											
COs	POs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10	
C01		S	S	Μ	L	L	Μ	Μ	Μ	L	Μ	
CO2		Μ	S	Μ	L	Μ	Μ	Μ	Μ	L	Μ	
CO3		Μ	S	Μ	S	Μ	Μ	S	S	Μ	Μ	
<b>CO4</b>		Μ	S	S	S	Μ	S	S	Μ	L	S	
CO5		S	Μ	S	S	Μ	S	S	Μ	Μ	S	

Г

Cour	se code		Core Paper VII:PARTIAL DIFFERENTIAL EQUATIONS	L	T	Р	С				
Seme	ster-II			6	0	0	5				
Cour	se Objec	tives:		I	1						
The n	nain obje	ctives of th	is course are to:								
1. Int	1. Introduce different methods to solve partial differential equation.										
2. Ac	2. Acquire knowledge in classification of partial differential equations and the methods tosolve.										
3. En	3. Enables the students to find the solution of Partial Differential Equation of practical										
applic	application like in Engineering, Physics, etc.,										
Evno	atad Car	urso Autoo	mosi								
Ont	he succes	seful compl	etion of the course, student will be able to:								
	I Indon	stand and re	member the physical situations with real world proh	ama ti		<b>V</b> 1					
1	Unders	stand and re	emember the physical situations with real world prob	ems to	)	KI 0 V					
	the me	thods to so	lve.	study		&К	.2				
2	Analyz	ze the type	of partial differential equations and different methods	to		K4					
	solve.										
3	Evalua	te Laplace	equation and analyze its applications.			K5					
4	Apply	variable se	parable method to solve Laplace and Diffusion equat	ion		K3					
5	Findin	g the appro	priate method to solve the partial differential equatio	ns		K6					
K1 -	Remem	ber; <b>K2</b> – U	Understand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e; K6 -	Cre	eate					
Unit	t:1	Par	tial Differential Equations of the First	urs							

Partial Differential Equations – Origins of First Order Differential Equations – Cauchy's Problem for first order equations – Linear Equations of the first order – Nonlinear partial differential equations of the first order – Cauchy's method of characteristics – Compatible system of First order Equations – Solutions satisfying Given Condition, Jacobi's method.

Unit:2	Partial Differential Equations of the Second Order	18hours
--------	----------------------------------------------------	---------

The Origin of Second Order Equations – Linear partial Differential Equations with constant coefficients – Equations with variable coefficients – Separation of variables – The method of Integral Transforms – Non – linear equations of the second order.

Unit:3	Laplace's Equation	18hours
Elementary	solutions of Laplace equation – Families of Equipotential Surfa	aces – Boundary
value problei	ns – Separation of variables – Surface Boundary Value Problem	s – Separation of
Variables – I	Problems with Axial Symmetry – The Theory of Green's Fund	tion for Laplace

Equation.

Unit:4

The Wave Equation

The Occurrence of the wave equation in Physics – Elementary Solutions of the One – dimensional Wave equations – Vibrating membrane, Application of the calculus of variations – Three dimensional problem – General solutions of the Wave equation.

Unit:	5	The Diffusion Equation	18hours				
Eleme	Elementary Solutions of the Diffusion Equation – Separation of variables – The						
Transt	forms – The	e use of Green's functions.					
		Total Lecture hours	90hours				
Text l	Book(s)						
1	Ian Snedde	on, Elements of Partial Differential Equations, McGraw Hill Int	ternational				
	Book Con	npany, New Delhi, 1983.					
Refer	ence Books						
1	M. D. Rais New Delh	singhania, Advanced Differential Equations, S. Chand and Com i, 2001.	npany Ltd.,				
2	K. Sankara	a Rao, Introduction to Partial Differential Equations, Second ed	ition, Prentice-				
	Hall of Inc	lia, New Delhi, 2006.	,				
3	J. N. Sharı	ma and K. Singh, Partial Differential Equations for Engineers and	nd Scientists,				
	Narosa Pu	blishing House, 2001.					
	1						
Relat	ed Online (	Contents [MOOC_SWAVAM_NPTFL_Websites etc.]					

1	https://www.youtube.com/watch?v=bPPWp65qpIA
2	When do PDE NOT have solutions? https://www.youtube.com/watch?v=BmTFbUAOeec&list=PLGCj8f6sgswntUil8yzohR_qa zOfYZCg_&index=49

Mapping	with Pr	ogramm	e Outco	mes						
Cos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	<b>PO9</b>	PO10
CO1	Μ	Μ	Μ	L	Μ	Μ	Μ	S	L	Μ
CO2	Μ	Μ	S	Μ	S	S	S	S	Μ	L
CO3	L	S	Μ	S	S	S	Μ	S	L	L
CO4	Μ	S	Μ	S	S	S	S	S	L	L
CO5	Μ	S	Μ	S	S	S	Μ	S	Μ	M

Course co	ode	Core Paper VIII:OPTIMIZATION TECHNIQUES	L	Т	Р	С
Semester	-II	<u> </u>	6	0	0	5
Course O	bjectives:				•	
The main	objectives of this co	urse are to:				
1. To m 2. To u relate 3. To u	nake the students und nderstand the applica edproblems. nderstand the concep	lerstand solving LPP using variousmethods. ation of queuing theory in real life situation and met ot of Kuhn tuckermethod.	hods	of sc	olving	
E	<u>C</u>					
On the s	Course Outcomes:	of the course, student will be able to:				
		abaience to as here as a life much here are as a director		c	V2	
1	Explain various te LPP.	changed to solve real life problems expressed in ter	ms of	[	К2	
2	Solving LPP throu	gh Dynamic Programming			K3	
3	Apply the fundam	ental concept of Inventory control.			K3	

4	Underst	erstanding the queuing theory K				
5	Solving NLPP using Kuhn–Tucker Method					
<b>K1</b> - Rei	member; <b>k</b>	<b>K2</b> - Understand; <b>K3</b> - Apply; <b>K4</b> - Analyze; <b>K5</b> - Evaluate; <b>K</b> 6	6 - Create			
Unit:1		Integer Programming	18hours			
Introduct method(a Implicit	tion – In all integer Enumerati	nteger Programming Formulations – Gomory's construct )–The Cutting – Plane Algorithm – Branch–and–Bound Tech ion Algorithm.	tion–Fractional cut nnique – Zero– One			
Unit:2		Dynamic Programming	18 hours			
Introduct Improver Tardiness Linear Pr	tion – App ment Probl s in Single rogrammin	lication of Dynamic Programming: Capital Budgeting Problem lem – Stage–coach Problem – Cargo Leading Problem – Minin Machine Scheduling Problem – Optimal Subdividing Problem ng Problem through Dynamic Programming.	n – Reliability nizing Total n – Solution of			
Unit:3		Inventory	18hours			
– Econo	mic Orden v Models	r Quantity–Deterministic Inventory Problems with No Shorta with shortages–EOO with Price Breaks–Multi Item Determ	ages– Deterministic ministic problems–			
inventor Inventor	y Problem	s with Uncertain Demand.				
inventor Inventor Unit:4	y Problem	S with Uncertain Demand. Queuing Theory	18hours			
Inventor Inventor Unit:4 Introduct System – (N/FIFO) models.	ion – Que - Classific , Model–I	uing System–Elements of Queuing System – Operating Characteriation of Queuing Models– Model–I (M/M/1):(∞/FIFO), MII (M/M/C):(∞/FIFO), Model–IV (M/M/C):(N/FIFO). Prob	18hourscteristics of QueuingModel–II (M/M/1) :olems in above four			
inventor Inventor Unit:4 Unit:4 Introduct System – (N/FIFO), models. Unit:5	ion – Que - Classific , Model–I	Nonlinear Programming         Nonlinear Programming       1         Image: Programming       1    <	18hours         cteristics of Queuing         Model–II (M/M/1) :         olems in above four         18         18         10         17         5         –			
inventor Inventor Unit:4 Unit:4 Introduct System – (N/FIFO) models. Unit:5 Introducti Quadratic Programm	ion – Que - Classific , Model–I ion – Lag - Program	s with Uncertain Demand. Queuing Theory uing System–Elements of Queuing System – Operating Charac- cation of Queuing Models– Model–I (M/M/1):(∞/FIFO), M III (M/M/C):(∞/FIFO), Model–IV (M/M/C):(N/FIFO). Prob Nonlinear Programming grangian Method –Jacobi Method– Kuhn–Tucker Method – ming – Separable Programming – Chance–Constrained pchastic Programming.	18hours         cteristics of Queuing         Model–II (M/M/1) :         olems in above four         18         18         10         17         5         -         d			

Text Bo	ok(s)
1	Hamdy A. Taha, Operations Research, Sixth edition, Prentice–Hall
	of India private Limited, NewDelhi, 1997.
Defenen	as Dachs
Keleren	
1	KantiSwarup, P. K. Gupta, Man Mohan, Operations Research, Sultan
2	Chand & Sons, Educational Publishers, New Delni.
Z	Edition S Chand & Company Pyt Ltd 2014
3	F. S. Hillier and J. Lieberman, Introduction to Operation Research,
	Seventh Edition, Tata– McGraw-Hill Publishing Company, New
	Delhi, 2001.
4	R. Panneerselvam, Operations Research, Second Edition, PHI
	Learning Private Limited, Delhi, 2015.
5	I. Griva, S. G. Nash and A. Sofer, Linear and Nonlinear Optimization,
	SIAM Publication, 2018.
Delated	Online Contents MOOC SWAVAM NETEL Websites etc.
Kelateu 1	https://www.youtube.com/watch?y=WmoLTOiOdwa
1	https://www.youtube.com/watch?v=wille010jQuwc https://www.youtube.com/watch?v=ETEMo5oUrds&list=DLLy_2iU
Z	CG87Ba8RGMTdeFZ iB-87V4i9n1&index=28
3	https://www.voutube.com/watch?y=2aPlzhsEsIw
4	https://www.youtube.com/watch?v=PavZX3hAL6I

Mappi	ng with	Progran	nme Out	tcomes						
COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10
CO1	Μ	L	S	Μ	Μ	S	S	S	S	S
CO2	S	Μ	S	S	S	S	Μ	S	L	S
CO3	S	Μ	S	S	S	S	Μ	S	L	S
CO4	Μ	L	S	Μ	Μ	S	S	S	S	S
CO5	S	Μ	S	S	S	S	Μ	S	L	S

Cou	rse code		AND FUZZY SETS	L	Т	Р	С		
			Flactive-II FUZZY L OCIC						
Cou	rse code		AND FUZZY SETS	L	Т	Р	С		
Sem	ester-II			6 0 0 4					
Cou	rse Object	tives:							
The	main obiec	tives of thi	s course are to:						
1.ide	ntify fuzzy	v sets and p	erform set operations on fuzzysets.						
2.apt	2 apply fuzzy logic in various real-life situations such as decision making and inventory control								
	2. appry rully rogic in various rear me situations such as accision making and inventory control.								
Expe	Expected Course Outcomes:								
On	On the successful completion of the course, student will be able to:								
1	1 Gain knowledge about the basic types of fuzzy sets and the difference K1, K2						K2		
	between crisp sets and fuzzy sets and the concept of operations on fuzzy sets								
2	2 Analyze and apply the knowledge of fuzzy relations. K						K4		
3	Develop	the basic c	concepts of fuzzy measures.			K6			
4	Explore	the concep	t of uncertainity			K6			
5	Underst	and the type	es of uncertainity measures and principles			K3			
K1	- Rememb	er; <b>K2</b> - Ui	nderstand; K3 - Apply; K4 - Analyze; K5 - Eva	aluate; <b>K</b>	6 - Cr	eate			
Uni	it:1		Crisp Sets and Fuzzy Sets	18	hou	S			
Intr	oduction-O	Crisp sets: A	An over view-The Notion of Fuzzy Sets-basic	concepts	of Fu	izzy S	ets		
- C	lassical Lo	gic: compl	ement-Fuzzy Union-Fuzzy intersection – Comb	oination o	f ope	ration	s –		
Ger	neral aggre	gation of o	perations.						
TT				1					
Un	it:2		Fuzzy	13	s hou	irs			
			Relation						
<u> </u>	S S								
Cris	sp and Fuz	zy relations	- Binary relations – Binary relations on a single	e set – Eq Morel	uival	ence a	ana		
rela	tions Equa	tions – CC	impationity on Tolerance Relations-Orderings		.115111	1 [.] uz	LLy		
1014	Light Light								
Uni	it:3		Fuzzy		18 I	iours			
			Measures						

General discussion – Belief and plausibility Measures – Probability measures – Possibility and Necessity measures.

Unit:4	Fuzzy Measures, Uncertainty	18hours					
Relationship a	Relationship among classes of fuzzy measures - Types of Uncertainty - Measures of Fuzzine						
Classical Mea	sures of Uncertainty.						
Unit:5	Uncertainty and Information	18hours					
Measures of I Uncertainty a information.	Dissonance-Measures of Confusion – Measures of Non-Spender Information – Information and Complexity – Principles	ecificity – of Uncertainty and					

	Total Lecture hours         90 hours
Text B	Book(s)
1	George J. Klir and Tina A. Folger, Fuzzy Sets, Uncertainty and Information, Fourth
	Unit_I: 1, 1, 1, 5, 2, 2, -2, 6
	Unit-II: $3.1 - 3.8$
	Unit-III: 4.1 – 4.4
	Unit-IV: 4.5, 5.1 – 5.3
	Unit-V: 5.4 – 5.9.
Refere	ence Books
1	George J. Klir and Bo Yuan, Fuzzy Sets and Fuzzy Logic - Theory and Applications,
	Prentice-Hall of India Private Limited
Relate	d Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://giocher.wordpress.com/chapter-2-par-2-2-fuzzy-relations-and-the-
	extension- principle/
2	https://nptel.ac.in/courses/108/104/108104157/

Mapping with Programme Outcomes													
COs	COs         PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9         1												
CO1	L	Μ	S	L	Μ	L	S	Μ	S	S			
CO2	Μ	S	Μ	S	S	S	S	S	S	S			
CO3	S	S	L	Μ	S	S	L	Μ	L	S			

CO4	S	S	L	Μ	S	S	L	Μ	L	S
CO5	Μ	S	Μ	S	S	S	S	S	Μ	S

Cou	rse code		Elective-II MAGNETOHYDRODYNAMICS	L	Т	Р	С				
Sem	ester-II			6	0	0	4				
Cou	rse Object	tives:									
The	main objec	ctives of this	s course are to:								
1. 2. 3.	<ol> <li>Understand the concepts of electromagnetism, electrostatic energy and magnetostaticenergy.</li> <li>Gain knowledge about boundary conditions of electric and magneticfields.</li> <li>Develop flexibility and creativity of the students in applying mathematical ideasand techniques to unfamiliar problems arising in everydaylife.</li> </ol>										
Exne	Expected Course Outcomes:										
On	the succes	sful comple	tion of the course student will be able to:								
1	motion i	in magnetic	field.	tws and m	na	Γ	.2				
2	Solve ar dynamic	nd analyze t c equations	he Naiver-Stokes equations and velocity Magneto with examples.	) fluid		K	.3				
3	Understa Reynold	and the MH	D approximation and gain ability to analyze Mag	netic		K	4				
4	Gain kn	owledge ab essible MH	out the Magneto hydrostatics and Alfven waves in D.	n		K	5				
5	Underst	and and dev	velop the Hartmann Flow in the presence of magn	etic field.		K	6				
K1	- Rememb	oer; <b>K2</b> - Ui	nderstand; K3 - Apply; K4 - Analyze; K5 - Evalu	ate; <b>K6</b> – (	Create						
Uni	it:1		Title of the Unit (Capitalize each Word)	18	nours						
Ele	ctromagne	tism – Func	lamental Laws – Electrostatic Energy – Electrody	mamics Ar	npere	's					
Lav	v – Lorentz	z force on a	moving charge - Magnetostatic Energy - Farada	y's Law of	fInduc	tion					
- Pe	– Poynting stresses.										

Unit:2	Title of the Unit (Capitalize each Word)	18 hours							
Electromagne magnetic field stokes equation	Electromagnetic Equations with respect to moving axes – boundary conditions of electric and magnetic fields. Kinematics of fluid motion – equation of continuity – Stress tensor – Navier-stokes equations – boundary condition – Velocity Magneto fluid dynamic equations.								
Unit:3Title of the Unit (Capitalize each Word)18hours									
MHD approxi	mation - equation of Magnetic diffusion in a moving conduct	ing medium –							
Magnetic Rey	nolds number.								
Unit:4	Title of the Unit (Capitalize each Word)	18hours							
Alfven's theo	rem Law of isorotation - Magneto hydrostatics - Force-free field	eld – Alfven waves							
in incompress	ibleMHD.								
Unit:5Title of the Unit (Capitalize each Word)18 hours									
Incompressib	Incompressible viscous flows in the presence of magnetic field – Hartmann Flow – unsteady								
Hartmann flov	w – Magneto fluid dynamic pipe flow.								

		Total Lecture hours	90
			hours
Text B	ook(s)		
1	Crammer	K.R. and Pai S.I, Magneto Fluid Dynamics for Engineers and	
	Applied P	hysicists, McGraw Hill, 1973.	
2	Ferraro, V	CA and Plumpton, Introduction to Magneto Fluid Dynamics, C	xford, 1966.
Refere	nce Books		
1	P. A. Davi	idson, An Introduction to Magnetohydrodynamics, Cambridge	University
	press, 200	1.	
2	R. V. Po	lovin, V. P. Demutskii, Fundamentals of Magnetohydrodynamic	cs,
	Springer	US, 1990.	
Relate	d Online C	ontents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://w	ww.youtube.com/watch?v=mE3uY_yKsCo	
2	https://w	ww.youtube.com/watch?v=rFJ1UZSFZno	
3	https://w	ww.youtube.com/watch?v=A9pUXEI128U	

Mapping with Programme Outcomes													
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10			
POs	101	102	105	104	105	100	107	100	107	1010			
CO1	S	Μ	Μ	S	L	Μ	S	L	Μ	Μ			
CO2	Μ	S	Μ	Μ	Μ	S	Μ	S	S	Μ			
CO3	S	Μ	Μ	Μ	S	L	Μ	Μ	M	Μ			

CO4	Μ	Μ	S	S	L	S	S	Μ	S	Μ
CO5	S	Μ	Μ	S	Μ	Μ	Μ	S	Μ	S

Course co	de		<b>Core Paper IX: TOPOLOGY</b>	L	Т	Р	С				
Semester-	III			6	0	0	5				
Course Ob	bjectives	S:									
The main o	objective	es of this co	urse are to:								
1. Tointro	oduce	the conce	pts of point-set topology with emphasis on continuo	usfui	nction	ıs,					
home	omorphi	sm ,connec	tedness, compactness, countability and separationaxion	ns.							
Expected Course Outcomes:											
On the su	On the successful completion of the course, student will be able to:										
1	Acquire	knowledge	about various types of topological spaces and their pro-	operti	es	K	51				
2	Discuss	connected	spaces, the components of a space			K	52				
3	Apply th	ne propertie	s and derive the proofs of theorems.			K	3				
4	Construe	ct a variety	of examples and counter examples in topology			K	3				
5	Understand the properties of the compact spaces and analyse the different types of										
	compactness.										
<b>K1</b> - Rem	1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 – Create										
Unit:1	1 Topological Spaces and Continuous functions 18hours										

Types of Topolog product topology functions.	gical Spaces and Examples - Basics for a topology - The order on X x Y - The subspace topology - Closed sets and limits poir	t topology -The tts - Continuous							
Unit:2	Topological Spaces and Continuous functions (Contd) and Connectedness	18hours							
The Product Topo	logy - The metric topology - Sequence lemma- Uniform limit theo	rem- Connected							
spaces - Connected subspaces of the real line - Components and Local connectedness.									
Unit:3	Compactness	18hours							
Compact spaces -	- Compact subspaces of the real line -Uniform continuity theorem	- Limit							
Point Compactnes	ss – complete metric spaces –compactness in metricspaces.								
Unit:4	Countability and Separation Axioms	18hours							
First and Second of separation axioms	countable spaces - Lindeloff and Separable spaces - Countability a s - Normal spaces - The Uryshon's lemma.	axioms - The							
Unit:5	Countability and Separation Axioms and Tychonoff Theorem	18hours							
The UrysohnMetr	ization Theorem - Tietze Extension Theorem - The Tychonoff the	eorem –							
Stone Cechcompa	ctifications.								

		Total Lecture hours	90hours								
Text	Book(s)	· · · ·									
1	James R. I	Munkres, Topology, Second Edition, Prentice-Hall of India, New	w Delhi, 2006.								
Refe	rence Book	S									
1	G. F. Sim	mons, Introduction to Topology and Modern Analysis, Tata Mc	Graw-Hill								
	Edition, N	lew Delhi, 2004.									
2	Fred H. Croom, Principles of Topology, Cengage India Pvt Ltd, New Delhi, 2009.										
3	Seymour I	Lipschutz, Schaum's Outline of Theory and Problems of Genera	l Topology,								
	McGraw-l	Hill Edition, New Delhi, 2006.									
Relat	ted Online	Contents [MOOC, SWAYAM, NPTEL, Websites etc.]									
1	https://np	ptel.ac.in/content/storage2/courses/111106054/Topology%20co	mplete%20cou								
	rse.p df										
2	https://w	ww.youtube.com/watch?v=Oe3Qjk3t0go&lc=UghijV07WCAw	pHgCoAEC								
3	https://w	ww.youtube.com/watch?v=2OMPmrHEO2M									

Mapping with Programme Outcomes													
COs	PO1         PO2         PO3         PO4         PO5         PO6         PO7         PO8         PO9							PO9	PO				
										10			
CO1	L	Μ	S	L	Μ	Μ	S	L	Μ	S			
CO2	S	Μ	Μ	L	L	S	S	Μ	S	Μ			
CO3	S	Μ	S	L	Μ	S	S	S	Μ	S			
CO4	S	S	S	Μ	L	S	S	S	Μ	S			
CO5	S	Μ	S	Μ	Μ	S	S	S	Μ	S			

infinite flat plate – Blasius equation and its solution in series.

	nat plate		1					54											
Cou	rse code		Co	re Pape	er X: F	FLUI	ID ]	DY	YNAI	MICS	S				L	Т	Р		С
Sem	ester-III	-													6	0	0		5
Cou	rse Objec	tives:														l			
The	main objed	ctives of thi	is cour	rse are	to:														
1. a 2. d 3. k	ble to kno levelop the now the re	w the fundate problems are all life apple	amenta solving licatio	al conc g skill ns of f	cepts in flu fluidd	of flu uiddy dynar	luid lyna imic	ids a nami	and i nics.	itspro	oper	ties.							
Expe	ected Cou	rse Outcon	nes:																
On	the succes	sful comple	etion c	of the c	course	se, stu	ude	lent	t will	be a	able	to:							
1	Recall t	he basic con	ncepts	s of vel	locity	y, der	nsit	ity a	and o	curv	iline	ear c	o-ord	inate	es.		K	Χ1	
2	Underst	and the con	ncepts	and eq	quatio	ons o	of f	fluic	id dy	'nam	ics						K	32	2
3	3 Analyze and understand the concepts of the force experienced by a two-									K	Κ2	2&							
	dimensional fixed body in a steady irrotational flow.										K	Κ4	ļ						
4	Analyze	e the approx	kimate	soluti	ons o	of the	e N	Navi	ier –	- Sto	kes	equa	ation.				K	ζ4	&
																	K	ζ5	5

5	Analyze and apply the appropriate method to solve integral equation of boundaryK3&layer, Blasius equation and its series solution.K4								
K1	- Rememb	asius equation and its series solution. her: K2 - Understand: K3 - Apply: K4 - Applyze: K5 - Evaluate:	K6 - Create	Λ4					
N1		or, <b>K2</b> - Onderstand, <b>K5</b> - Appry, <b>K4</b> - Anaryze, <b>K5</b> - Evaluate,	Ko - Create						
Uni	it:1	Bernoulli's Equation and Equations of Motion	18	8 hours					
Intr	oductory I	Notions – Velocity – Stream Lines and Path Lines – Stream Tube	es and Filame	ents –					
Flui	id Body –	Density – Pressure. Differentiation with respect to the time – Equ	uation of con	tinuity					
- B	– Boundary conditions – Kinematical and physical – Rate of change of linear momentum –								
Equ	ation of m	notion of an inviscid fluid.							
Uni	it:2	<b>Equations of Motion (Contd)</b>	18	hours					
Eul	er's mome	ntum Theorem – Conservative forces – Bernoulli's theorem in ste	ady motion -	energy					
equ	ation for in	nviscid fluid – circulation – Kelvin's theorem – vortex motion –	Helmholtz ec	juation.					
Uni	it:3	<b>Two-Dimensional Motion</b>	18	8 hours					
Uni Tw	i <b>t:3</b> vo Dimensi	Two-Dimensional Motion ional Motion – Two Dimensional Functions – Complex Potential	18 – basic singu	<b>3 hours</b> alarities					
Uni Tw – sc	i <b>t:3</b> 70 Dimensiource – sin	Two-Dimensional Motionional Motion – Two Dimensional Functions – Complex Potentialk – Vortex – doublet – Circle theorem. Flow past a circular cylin	18 – basic singunder with circ	<b>B hours</b> alarities culation					
<b>Uni</b> Tw - sc - B	i <b>t:3</b> 70 Dimensiource – sin lasius The	Two-Dimensional Motionional Motion – Two Dimensional Functions – Complex Potentialk – Vortex – doublet – Circle theorem. Flow past a circular cylinorem – Lift force. (Magnus effect)	18 – basic singu nder with circ	<b>3 hours</b> alarities culation					
Uni Tw – sc – B	i <b>t:3</b> To Dimensiource – sin lasius The	Two-Dimensional Motionional Motion – Two Dimensional Functions – Complex Potentialk – Vortex – doublet – Circle theorem. Flow past a circular cylinorem – Lift force. (Magnus effect)	18 – basic singunder with circ	<b>B hours</b> ularities culation					
Uni Tw – sc – B	it:3 70 Dimensio ource – sin lasius The it:4	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids	18 – basic singu nder with circ 18	<b>B hours</b> alarities culation <b>B hours</b>					
Uni Tw – sc – B Uni Viso	it:3 To Dimensiource – sin lasius The fit:4 cous flows	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids         s – Navier-Stokes equations – Vorticity and circulation in a vis	18 – basic singunder with circo 18 cous fluid –	<b>B hours</b> ularities culation <b>B hours</b> Steady					
Uni Tw – sc – B Uni Viso flov	it:3 vo Dimensiource – sin lasius The it:4 cous flows v through	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids         s – Navier-Stokes equations – Vorticity and circulation in a vis         an arbitrary cylinder under pressure – Steady Couette flow be	18 - basic singu ider with circ 18 cous fluid - etween cylin	<b>B hours</b> alarities culation <b>B hours</b> Steady ders in					
Uni Tw – sc – B Uni Vise flov rela	it:3 To Dimensiource – sin lasius The dit:4 cous flows w through tive motio	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids         s – Navier-Stokes equations – Vorticity and circulation in a vis         an arbitrary cylinder under pressure – Steady Couette flow be         n – Steady flow between parallel planes.	18 – basic singunder with circo ader with circo 18 scous fluid – etween cylin	<b>B hours</b> ularities culation <b>B hours</b> Steady ders in					
Uni Tw – sc – B Uni Vise flov rela	it:3 vo Dimensiource – sin lasius The it:4 cous flows v through tive motio	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids         s – Navier-Stokes equations – Vorticity and circulation in a vis         an arbitrary cylinder under pressure – Steady Couette flow be         n – Steady flow between parallel planes.	18 – basic singu ider with circ 18 scous fluid – etween cylin	B hours         alarities         alarities         culation         B hours         Steady         iders in					
Uni Tw – sc – B Uni Viso flov rela Uni	it:3 o Dimension ource – sin lasius The it:4 cous flows v through tive motio it:5	Two-Dimensional Motion         ional Motion – Two Dimensional Functions – Complex Potential         k – Vortex – doublet – Circle theorem. Flow past a circular cylin         orem – Lift force. (Magnus effect)         Dynamics of Real Fluids         s – Navier-Stokes equations – Vorticity and circulation in a vis         an arbitrary cylinder under pressure – Steady Couette flow be         n – Steady flow between parallel planes.	18 - basic singunder with circo ader with circo 18 cous fluid – etween cylin 18	8 hours         alarities         alarities         culation         8 hours         Steady         aders in         8 hours         8 hours					
Uni Tw – sc – B Uni Vise flov rela Uni Bou	it:3 vo Dimensiource – sin lasius The it:4 cous flows v through tive motio it:5 indary Lay	Two-Dimensional Motionional Motion – Two Dimensional Functions – Complex Potentialk – Vortex – doublet – Circle theorem. Flow past a circular cylinorem – Lift force. (Magnus effect)Dynamics of Real Fluidss – Navier-Stokes equations – Vorticity and circulation in a visan arbitrary cylinder under pressure – Steady Couette flow ben – Steady flow between parallel planes.The Laminar Boundary Layer in Incompressible Flow//er concept – Boundary Layer equations – Displacement thicknes	18 - basic singu ider with circ 18 cous fluid - etween cylin 18 ss, Momentu	8 hours         alarities         alarities         culation         8 hours         Steady         aders in         8 hours         m					

							Tot	al Lect	ure hours		90 hours
Te	ext Book(s)										
1	Units I an	d II: ]	L. M. M	Iilne Tho	mson, T	Theore	etical H	ydro Dy	ynamics, Ma	acmilla	an Company,
	5th Editior	ı (196	8).								
	Chapter I		:	Section	ns 1.0 –	1.3., 3	3.10-3.	41 (omi	t3.32)		
	Chapter III : Sections 3.42 – 3.53 (omit3.44)										
2	Units III, IV and V: Modern Fluid Dynamics Volume I, N. Curle and H. J. Davies, D. Van										
	Nostrand C	Compa	any Lim	nited., Lo	ndon, 19	968.					
	Chapter II	[ :	Sectio	ons 3.1	- 3.7.5	5 (omi	it 3.3.4	, 3.4,3.5	5.2,3.6)		
	ChapterV	:	Sectio	ons 5.2.1-	- 5.3	3.3					
	ChapterVI	:	Sectio	ons 6.1	- 6.3.	1 (omi	it 6.2.2	.,6.2.5)			
Re	eference Bo	oks									
1	F. Chorlto	on, Te	extbook	of Fluid	Dynami	ics, CI	BS Pub	lishers,	New Delhi,	2004.	

2	A. J. Chorin and A. Marsden, A Mathematical Introduction to Fluid Dynamics, Springer-
	Verlag, New York, 1993.

# Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]

- 1 https://nptel.ac.in/courses/112/106/112106200/
- 2 https://nptel.ac.in/courses/112/105/112105171/

Mapping with Programme Outcomes											
COs	POs	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO
											10
CO1		Μ	S	Μ	Μ	Μ	L	L	Μ	Μ	S
CO2		Μ	S	Μ	Μ	S	Μ	S	Μ	Μ	S
CO3		L	Μ	Μ	Μ	S	Μ	S	S	Μ	S
CO4		Μ	Μ	S	S	Μ	Μ	S	S	Μ	S
CO5		L	Μ	S	Μ	Μ	Μ	S	S	Μ	S

Cour code	rse	Core Paper XI:DIFFERENTIAL GEOMETRY	L	T	Р	С							
Seme	Semester-III												
Course Objectives													
The 1	nain objectives of	this course are to:											
1.	Gain knowledge a	bout curves and itscharacterizations.											
2.	Get sufficient kno	wledge on Elementary Theory ofsurfaces.											
3.	Make the students	to familiarize with space curves and curves onsurfaces.											
Expe	cted Course Outo	omes:											
On	the successful com	pletion of the course, student will be able to:											
1	Define and under	rstand basic definitions of the theory of curves.			K1								

2		K2									
3	Anal	yze the elements of Analytic representation.		K4							
4	Acqu	ire knowledge on first fundamental form and second fundamental f	orm.	K4							
5	Expla	ain Meusnier's theorem and Euler's Theorem on elementary theory	of	K3							
K1	- Reme	ember: <b>K2</b> - Understand: <b>K3</b> - Apply: <b>K4</b> - Apalyze: <b>K5</b> - Evaluate:	K6 -	Create							
131		Ander, <b>K2</b> - Onderstand, <b>K5</b> - Appry, <b>K4</b> - Anaryze, <b>K5</b> - Evaluate,	KU	Cicate							
Uni	it:1	Representation and Theory of SpaceCurves:		21							
Rep	resentat	ion and theory of Space Curves introduction-Representation of space curv	ves- U	nique							
para	metric 1	representation of a space curve- Arc length - tangent and osculating plane	- prin	cipal							
normal and binormal - curvature and torsion - contact between curves and surfaces - osculating circle											
and	osculati	ng sphere - locus of centres of spherical curvature									
Uni	it:2	Evolutes of a Plane and Space Curve:		18 hours							
Evol	utes of	a Plane and Space Curve introduction- Tangent surfaces - Involutes	<u> </u>								
and e	and evolutesBetrand curves - Spherical indicatrix - Intrinsic equations of space										
curve	es – Fui	ndamental existence theorem for space curves - Helices.									
United The First Fundamental Form and Local Intringia Droportion of a 19hours											
Uni		ine first fundamental form and Local Intrinsic Properties of a Surface.	L	18nours							
The intro of a s surfa - Dir	First duction surface ces of r ection c	Fundamental Form and Local Intrinsic Properties of a Sur - Definition of a surface - Nature of points on a surface - Representa - Curves on surfaces - Tangent plane and surface normal - The ger revolution – Helicoids - Metric on a surface - The first fundamental f coefficients on a surface.	face tion ieral orm								
Uns	4. 1	Families of curves	1	<b>Oh</b> ou ma							
Fami	lies of	curves introduction Orthogonal trajectories - Double family of cu	rvee	onours							
-Iso	metric of	correspondence - Intrinsic properties - Geodesics on a surface: Geode	esics								
and	their di	ifferential equations - Canonical geodesic equations - Geodesics	s on								
surfa	ce of r	evolution - Normal property of geodesics - Differential equation	s of								
geod	esics us	sing normalproperty.									
Uni	it:5	Existence Theorems:	1	8hours							
Exis	stence th	neorems proof- Geodesic parallels - Geodesic polar coordinates – Geodesi	c curv	ature -							
Gau	iss-bonn	et theorem-Meusnieus's theorem-Gaussian curvature Eulers's theorem- Du	plin``s	sindicarix-							
Sur	ace of r	evolution conjugate system-Asymmetric lines-isometric lines									
				0h							
		I otal Lecture nours	9	vnours							

# Text Book(s)

1

# D. Somasundaram, "Differential Geometry: A first course", Narosa Publishing House, New - Delhi, India, 2005. Unit I: Sections 1.2-1.7, 1.10-1.12 Unit II: Sections 1.13-1.18 Unit III: Sections 2.2-2.10 Unit IV: Sections 2.11-2.15, 3.2-3.6 Unit V: Sections 3.7-3.12

R	Reference Books							
1	Differential Geometry by T.J. Willmore, Oxford University Press (Seventeenth Impression - 2002).							
2	Dirk J. Struik: "Lectures on Classical Differential Geometry" (second							
	edition),Addison Wesley PublishingCompany.							
3	J. N. Sharma & A. R. Vasistha, "Differential Geormetry", KedarNath Ram							
	Nath, Meerut, 1998.							
R	celated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https://nptel.ac.in/noc/courses/noc16/SEM2/noc16-ma07/							
2	https://www.youtube.com/watch?v=tKnBj7B2PSg							
3	http://pages.uoregon.edu/koch/math433/Final.pdf							
M	apping with Programme Outcomes							

Mappi	Mapping with Hogramme Outcomes												
C O	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10			
S													
Р													
0													
s —													
CO1	S	M-	Μ	S	S	L	S	S	L	Μ			
CO2	Μ	S	Μ	Μ	Μ	Μ	Μ	L	Μ	S			
<b>CO3</b>	S	Μ	S	Μ	L	Μ	S	Μ	S	L			
<b>CO4</b>	Μ	S	L	S	S	L	Μ	S	Μ	S			
CO5	Μ	S	Μ	S	Μ	Μ	S	Μ	S	Μ			

Course co	de		Core Paper XII: PROGRAMMING IN PYTH	ON	L	L T P						
Semester-	III	I			4	0	0	4				
Course Ol	bjectives:						1					
The main of	objectives	of this cour	rse are to:									
1. T	o introduc	e the funda	mentals of PythonProgramming.									
2. To	o teach ab	out the con	cept of Functions inPython.									
3. To	o impart th	ne knowled	ge of Lists, Tuples, Files andDirectories									
Expected Course Outcomes:												
On the su	ccessful c	ompletion of	of the course, student will be able to:									
1	Rememb in Pythor	ering the control of	oncept of operators, data types, Loops and contribution ing.	ol state	ements	K	[1					
2	Understa	nding the c	oncepts of Input / Output operations in file.			K	2					
3	Applying	the concept	ot of functions and exception handling			K	3					
4	Analyzin	g the struct	ures of list, tuples and maintaining dictionaries.			K	4					
5	5 Applying the concept of User defined exceptions K3											
K1 - Rem	nember; K	2 - Underst	and; K3 - Apply; K4 - Analyze; K5 - Evaluate	; K6 - (	Create							
		•										
Unit:1			Introduction to Python		12hours							
Comments Statement - Iteration	s - Python and Expre - While S	Identifiers Identifiers ession - Stri Statement -	- Reserved Keywords – Variables - Standard D ing Operations - Boolean Expressions - Control Input from Keyboard.	ata Typ Statei	pes. Ope ments	ı – ratoı	·s -					
				T	101							
Unit:2			Function		12hour	S						
Functions: Arguments Functions - are Immu Formatting	Built-in - Functi - Writing table - Functions	functions - on Calls - Python Scr String Tra s.	Composition of functions - User defined f The return Statement - Python Recursive Fu ipts. Strings: Compound Data Type - Len Func versal - Escape Characters - String Form	inction tion - S natting	ns - Par - The String SI Operat	ame Anc ices or	ters onym - Stri - Stri	and ous ings ring				
<b></b>												
Unit:3	** *		Lists	-	12ho	irs	•••					
Lists: Operators Immutable Operations	: Values a - Built-in - Tuple A - Built-in	nd Accessin List Meth ssignment Tuple Fun	ng Elements - Lists are Mutable - Deleting Eler ods. Tuples: Creating Tuples - Accessing val - Tuples as Return Values - Variable Length Arg ctions.	nents fi ues in gument	om List Tuples Tuples -	- Bu - Tu · Bas	ilt-in ples ic Tı	list are iple				
IInit.1			Dictionaries		1 <b>2</b> ho	IFC						
UIIII:4			DICHOHALICS		1200	112						

Dictionaries: Creating a Dictionary - Accessing values in a Dictionary - Updating Dictionary - Deleting elements from Dictionary - Properties of Dictionary keys - Operations in Dictionary - Built- in Dictionary methods. Classes and Objects: Overview of OOP - Class Definition - Creating Objects - Objects as arguments - Objects as Return Values - Built-in class attribute - Inheritance - Method Overriding - Data Encapsulation - DataHiding.

Unit:5	Files	12hours

Files: Text files: Opening a file - Closing a file - The file object attributes - Writing to a file - Reading from a file - Renaming a file - Deleting a file - Files related methods. Directories: mkdir(), chdir(), getcwd(), rmdir(). Exceptions: Built-in exceptions - Handling exceptions - Exception with arguments - User defined exceptions.

* - Self Study and questions for examinations may be taken from the self study portions also.

			Tota hou	al Lecture rs	60hours						
Text Bo	ook(s)										
1	E. Balagurusamy,Problem Solving and Python Programming, FirstEdition , 2017, McGraw-Hill Education (India) Pvt. Ltd, Chennai.										
Referei	nce Books										
1	1. Ashok Solvin	NamdevKamthane,Amit g with Python, McGraw-H	Ashok Kamthane, Iill, First Edition,2	Programming ar 2017.	nd Problem						
2	2. Martin First E	Jones, Python for Complection, 2015.	ete Beginners, Cre	eate space Indepe	endent Publisher,						
3	3. S.A Py Publish	v. Kulkarni, Problem Solvi hing t.Ltd, First Edition, 2	ng and Python Pro 017.	ogramming, Yes	Dee						

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	PO8	PO9	PO10
CO1	S	S	S	Μ	Μ	Μ	S	L	Μ	S
CO2	S	S	M	Μ	L	S	S	Μ	S	Μ
CO3	Μ	Μ	L	S	S	S	S	S	Μ	S
CO4	S	Μ	S	L	L	S	S	S	М	S
CO5	S	S	S	L	Μ	S	S	Μ	S	Μ

Course code	Core Practical-I: Programming in Python - Practical	L	Т	Р	С
Semester-III		0	0	2	2

## **Course Objectives:**

The main objectives of this course are to:

- 1. To gain knowledge about the concepts of Pythonprogramming.
- 2. To solve algebraic and non-linear ordinary differential equations using Pythonprograms.
- 3. To enhance the students to develop the program writing skills for mathematicalproblems.

Expec	ted Course Outcomes:	
On th	ne successful completion of the course, student will be able to:	
1	Understand the concept of Pythonprogramming	K2
2	Utilizing Python program for finding the Numerical solutions of Algebraic and Transcendental Equations.	K3
3	Analyzing the GCD, interpolation values and File management using Python programs	K4
4	implement basic operators and function concepts.	K5
5	Applying, compiling and debugging programs with the help of Python	K6

# LIST OF PRACTICAL PROGRAMS

- 1. Program to determine the Greatest Common Divisor (GCD) of any twointegers.
- 2. Program to accept two complex numbers and find theirsum.
- 3. Program to generate randomnumbers.
- 4. Program to display the Pascal'striangle.
- 5. Program to find the number of instances of different digits in a givennumber.
- 6. Program to find the number of vowels and consonants in a textstring.
- 7. Program to find the numerical solution of algebraic and transcendental equations by using
  - (i) BisectionMethod.
  - (ii) Newton RaphsonMethod.
- 8. Program to solve an ordinary differential equation by using Fourth order Runge-KuttaMethod.
- 9. Program to find the interpolation value using Lagrange'smethod.
- 10. Program to find the inverse of a matrix by Gauss Jordanmethod.
- 11. Program to solve the simultaneous equationsby
  - (i) Gauss EliminationMethod

# (ii) Gauss SeidelMethod

- 12. Program to demonstrate File Input and Outputoperations.
- 13. Program to demonstrate Classes and theirAttributes

Distribution of Mar	ksinESE	CIA	
Experiment Record	: 50 : 10	CIAPracticalExam Attendance Observation Note Book	: 25 : 5 : 10
Total	: 60	Total	: 40

To be awarded jointly by the internal and external examiners

COs/POs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	М	S	S	S	S	М	S
CO3	S	S	S	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	S	М	S	S
CO5	S	S	S	S	Μ	S	S	S	Μ	S

S- Strong = 3, M-Medium= 2, L-Low = 1

Course code		Elective-III:MATHEMATICAL STATISTICS	L	Р	С						
Semester-III			6	0	0	4					
Course Objectiv	es:										
The main objecti	ves of this c	ourse are to:									
1. Enables to learn different aspects of statistics.											
2. Acquire kno	wledge abo	ut moments and properties of theoretical distributions.									
3. Study unbia	3. Study unbiasedness and consistency of limiting distributions.										
Expected Cours	e Outcomes	:									
On the successf	al completion	on of the course, student will be able to:									
1 Remen	bering the u	inderstanding the basic concepts such as statistics,			K	.1					
probabi	lity and ran	dom variables.			&	2					
					K	2					
2 Applyin	ng the conce	pts and methods to find the moments of the distribution	s.		K	3					
3 Study r	nultivariate	distributions and the independence of random			Κ	5					
variable	es. Further e	valuating the marginal distributions from bivariate									
distribu	tions.										
4 Analyz	e and study	the properties of some discrete as well as			K	.4					
5 Unders	ous distribu	tions			V	<u>.</u>					
5 Unders		vergence of distributions and central limit theorem.	0		Ň	.2					
KI - Remember	; <b>K</b> 2 - Unde	erstand; <b>K3</b> - Apply; <b>K4</b> - Analyze; <b>K5</b> - Evaluate; <b>K6</b> -	Crea	ate							
T		Duchakility and Distributions		10							
Unit:1	Cot. Theory	The Drobability Set Expetion Conditional Dr	18hours								
Independence –	Random Va	riables - Discrete Random Variables- Continuous Rando	obab om V	inty aria	able	10 S.					
Init.?	Pr	abability and Distributions (continued) and		15	Rho	rc					
Omt.2		Multivariate Distributions		10	5110	uis					
Probability and	l Distributi	ons: Expectation of a Random Variables - Some Specia	l Exp	ecta	atio	ns					
- Important met Multivariate	juannies. Distribution	s. Distributions of Two Random Variables - Tra	nefo	rma	tior	16.					
Bivariate Rand	om Variab	les - Conditional Distributions and Expectations -	Ind	ene	nde	ent					
RandomVariabl	es.	Conditional Distributions and Expectations	ma	epe	nuc	110					
Unit:3		Some Special Distributions		18	Sho	urs					
The Binomial and Related Distributions - The Poisson Distribution - The $\Gamma$ , $\chi 2$ , and $\beta$											
Distributions - 7	The Normal	Distribution.	-								
Unit:4	Some S	Special Distributions (continued), Unbiasedness, Consistency and Limiting Distributions		18	Sho	urs					

Unit:	5 Some Elementary Statistical Inferences	18hours
Sampl	ling and Statistics – More on Confidence Intervals - Introduction to Hypothesis	is Testing -
Additi	ional Comments About Statistical Tests - Chi-Square Tests – The Method of N	Monte Carlo.
		0.01
	Total Lecture hours	90hours
Text I	Book(s)	
1	Robert V. Hogg, Allen T. Craig and Joseph W. McKean, Introduction to Ma	thematical
	Statistics, Sixth Edition, Pearson Education, 2005.	
	Unit-I: 1.1 –1.7	
	Unit-II: $1.8 - 1.10, 2.1 - 2.3, 2.5$	
	Unit-III: 3.1 –3.4	
	Unit-IV: 3.6, 4.1 –4.4	
	Unit-V: 5.1, 5.4 – 5.8	
Refer	ence Books	
1	Michael J. Crawley, The R Book, John Wiley & Sons, Second Edition (2013	5).
2	MarekFisz, Probability Theory and Mathematical Statistics, John Wiley.	
3	Vijay K. Rohatgi and A.K. Md. Ehsanes Saleh, An Introduction to Probabili	ty and
	Statistics, Wiley India, Second Edition (2001).	
4	M. Rajagopalan and P. Dhanavanthan, Statistical Inference, PHI Learning P	vt. Ltd.,
	New Delhi (2012).	
Relate	ed Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]	
1	https://nptel.ac.in/courses/111/104/111104032/#	
2	https://nptel.ac.in/courses/111/105/111105090/	

Mapping with Programme Outcomes										
COs	PO1	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO
										10
CO1	S	Μ	Μ	L	L	Μ	S	S	S	S
CO2	Μ	S	Μ	L	S	S	Μ	S	S	S
CO3	S	Μ	S	Μ	Μ	S	S	Μ	L	S
CO4	Μ	Μ	S	Μ	Μ	S	M	S	Μ	S
CO5	Μ	Μ	L	Μ	S	Μ	S	S	S	S

Cou	rse code		Elective-III: NUMBER THEORY	L	L T						
Sem	ester-III			6	0	0	4				
Cou	rse Obje	ctives:					<u> </u>				
The	main obje	ectives of this	course are to:								
1.	To give	Introduction	to Elementary NumberTheory.								
2.	To show	how certain	number theorems can be applied withinCryptograp	hy.							
<b>F</b>		O									
Exp	the succe	urse Outcom	tion of the course, student will be able to:								
On the successful completion of the course, student will be able to:											
1	Find quotients and remainders and greatest common divisors applying Euclidean Algorithm										
2	2 Understand the definitions of congruence, residue classes and least residues K										
3	Analyze the concept of Prime Power Moduli and Quadratic Residues										
4	⁴ Determine multiplicative inverses, modulo n and use to solve linear congruence.										
5	Acquir	e knowledge	on Linear Diaphantine equation			K	4				
K1	- Remem	ber; <b>K2</b> - Un	derstand; K3 - Apply; K4 - Analyze; K5 - Evaluate	e; K6 –	Create	e					
Un	it:1		Divisibility		18hou	irs					
Div	isibility a	nd Euclidean	algorithm.								
TT			2		101						
Un	it:2		Congruences		18hoi	irs					
Deg	gree 1. Ch	inese Remain	nder Theorem, The functions $\phi(n)$ , Congruences of	higher	degree	s of e.					
TT		a		<u> </u>	101						
	it:3		ruences (contd), Quadratic Reciprocity	<u> </u>	181	iour	S				
Pri	me powe	r moduli, Prii	ne modulus. Quadratic residues - Quadratic recipro	city.							
Un	it:4	Jacobi Svn	nbol and Some Functions of Number Theory		181	nom	s				
The	Jacobi sv	/mbol – Grea	test integer function - Arithmetic functions – The N	Ioebius	Inver	sion					
form	nula.										
Un	Unit:5Arithmetic Functions and Diophantine Equations18hours										

Multiplication of arithmetic functions, Linear Diophantine equations – The equation $x^2 + y^2 = z^2$ -						
The equation $x^4 + y^4 = z^2$ .						
	Total Lecture hours	90 hours				

Те	ext Book(s)							
1	Ivan Niven and Herbert Zuckerman, An Introduction to the Theory of Numbers, John Wiley							
	and Sons Inc., 1972.							
	Unit-I: Chapter I: Sections: 1.1–1.3							
	Unit-II: ChapterII: Section: 2.1–2.5							
	Unit-III: Chapter II: Section: $2.6 - 2.7$ , Chapter III: Section: $3.1-3.2$							
	Unit-IV: Chapter III: Section: 3.3, Chapter IV: Section: 4.1–4.3 Unit-							
	V: Chapter IV: Section: 4.4, Chapter V: Section: 5.1 – 5.6							
Re	Reference Books							
1	T. M. Apostol, Introduction to Analytic Number Theory, Springer Verlag, 1976.							
2	Kenneth H. Rosen, Elementary Number Theory and its Applications, Addison Wesley							
	Publishing Company, 1968.							
3	George E. Andrews, Number Theory, Hindustan Publishing, New Delhi, 1989.							
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]							
1	https:// freevideolectures.com/course/3027/cryptography-and-network-security							
2	https://www.youtube.com/watch?v=SCvtxjpVQms&t=3321s (NPTEL)							
3	https://www.youtube.com/watch?v=Oyw5OmOd9B8&list=PLLtQL9wSL16iRzTi2aKPiH O1f1UjTTkJD (Mathpod)							

Mappi	Mapping with Programme Outcomes										
COs	Pos	PO1	PO2	PO3	PO4	PO5	PO6	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10
CO1		S	Μ	Μ	L	Μ	Μ	Μ	Μ	Μ	S
CO2		Μ	S	L	Μ	Μ	S	Μ	Μ	S	S
CO3		L	Μ	S	Μ	S	S	Μ	Μ	S	S
<b>CO4</b>		L	Μ	Μ	L	L	Μ	Μ	S	S	S
CO5		S	Μ	Μ	L	Μ	S	Μ	S	S	S

Course co	de		Core Paper XIII:FUNCTIONAL ANALYSIS	L T P C						
Semester-	IV			6	0	0	5			
Course Ol	ojectives:									
The main objectives of this course are to:										
1. To get an overview of normed spaces and familiarize on Banach space, Hilbert space, conjugate space ,bounded linear operators and spectral theory.										
J. G										
Expected	Course O	utcomes:								
On the su	ccessful co	ompletion of	of the course, student will be able to:							
1	Familian linear sp	Familiarize with the concepts of normed linear spaces and operators on normed linear space								
2	Demons Banach	Demonstrate an understanding of the concepts of Hilbert spaces and Banach spaces, and their role in mathematics								
3	Apply th	Apply the theorems.								
4	Obtain Orthogonal complements, Orthonormal sets and conjugate space.						K4			
5	Understand the concepts of linear operators, self adjoint, unitary						2			
	operator	rs, isometri	c isomorphism on Hilbert spaces ,Determinants							
V1 D	,the spec	$\frac{1}{2}$	operator, Banach algebra.							
KI - Rem	ember; K	2 - Underst	and; K3 - Apply; K4 - Analyze; K5 - Evaluate; J	<b>xo</b> - Cre	eate					
IInit.1			Donach	10	how					
Unit:1				18hours						
Banach st	vaces Th	e definition	and some examples Continuous linear transfo	rmation	c					
The Hahr	Banach t	heorem –D	ual spaces- The natural imbedding of N in N** -	The op	en					
mapping	theorem -	Closed Gra	ph theorem.	op						
11 0			1							
Unit:2			Hilbert	18	Shou	irs				
			spaces							
The conju	$\frac{1}{1}$ igate of an	operator –	Uniform boundedness Principal - Hilbert spaces	– The c	lefir	itior	1			
and some	simple pr	operties – (	Orthogonal complements and complements - Orth	honorma	ıl se	ts an	d			
sequences	s - waxiiii		1111a1 SCIS.							
Unit:3	Unit:3 Hilbert spaces (Contd) 18hou									

The Conjugate space H* - Representation of functional on Hilbert spaces -The adjoint of an operator – Self-adjoint operators – Normal and unitary operators – Projections.

Unit:4	Finite-Dimensional Spectral Theory	18hours
Matrices – Determi	nants and the spectrum of bounded operator – The spectra	l theorem.

Unit:5	General Preliminaries on Banach Algebras	18hours
The definition and s	some examples of Banach algebra – Regular and singular	elements –

Topological divisors of zero – The spectrum – The formula for the spectral radius.

					Total Lecture	90hours	5
					hours		
Text Bo	ook(s)						
	0 5 0'	<b>T</b> .	1	114	1 4 1 * 3		
1	G. F. Simn	nons, Intr	oduction to Topolo	egy and Mo	odern Analysis, N	AcGraw-Hill	
	Book Com	npany, Lo	ndon, 1963.				
	UnitI	•	Sections: 46–50	).			
	UnitI	I:	Sections: 51–54				
	UnitI	II:	Sections: 55 – 59	).			
	UnitI	V:	Sections: 60-63	8.			
	UnitV	V:	Sections: 64 –68	8.			
	1						
Referer	ce Books						
1	C. Goffma	an and G.	Pedrick, A First Co	ourse in Fu	nctional Analysi	s, Prentice Hall of	
	India, New	v Deli, 19	37.		2		
2	G. Bachma	an and L.	Narici, Functional	Analysis.	Academic Press.	New York, 1966.	
-	0.2					1,0,1,1,0,0,0	
3	L. A. Luste	ernik and	V.J. Sobolev, Elem	nents of Fu	nctional Analysi	s, Hindustan	
	Publishing	g Corporat	ion, New Delhi, 19	971.			
Related	Online Co	ontents [M	IOOC, SWAYAM	I, NPTEL	Websites etc.]		
1	https://np	otel.ac.in/c	ourses/111/105/11	1105037/			
2	https://ocw	w.mit.edu/	courses/mathematic	cs/18-102-	introduction-to-	functional-analysis-	
	spring- 20	09/lecture	-notes/			•	
	<u> </u>						

Mapping with l	Program	nme Out	comes							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	Μ	Μ	S	L	Μ	S
CO2	S	S	Μ	Μ	L	S	S	Μ	S	Μ
CO3	Μ	Μ	L	S	S	S	S	S	Μ	S
CO4	S	Μ	S	L	L	S	S	S	M	S
CO5	S	S	S	L	Μ	S	S	Μ	S	Μ

Course code	Course codeCore Paper XIV: MESURE THEORYLTP							
Semester-IV 6 0								
Course Objectives:								
The main objectives of this	course are to:							
1. Understand the concep	s of outer measures and integrals							
2. Provide the relationship	between Riemann and Lebesgueintegral							
3. Learner will be derive	ntegration and derivates by using Radon-NikodymThe	orem						
and Fubini"sTheorem								
4.Gain understanding of the	abstract measure theory and definition and main propertie	s of the	integ	ral.				
5. To constructLebesgue	s measure on the real line and in n-dimensionalEuclide	ean spa	.ce.					
6.To explain the basic ad	vanced directions of thetheory							
E 4 1 C 0 4								
Expected Course Outcome								
On the successful completi	on of the course, student will be able to:							
1 Understanding the ba	sic concepts of the definition of general Lebesque integ	ral.		K2	2			
2 Derives the concepts	of Borel sets, measurable functions, differentiation of			K1	&			
monotone functions				K5	5			
3 Demonstrate statemen	t of main results in fundamental integral theorems, mo	notone	)	K2	2&			
convergence theorem	n, and its related proves and results.			K5	5			
4 Demonstrate the proc	f in integration in product spaces and signed measures.			K2	2			
5 Apply the theory of the	is course to solve real problems in difficult situations.			K5	5&			
				Ke	5			
<b>KI</b> - Remember; <b>K</b> 2 - Unc	erstand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6	- Crea	te					
	haarna Maarina	<u> </u>	10					
	ebesgue measure		18	s hou	irs			

Lebesgue Measure introduction- Lebesgue Outer Measure – Measurable Sets Regularity Measurable Functions
- every interval is measurable- Borel set- outer measure of intervalequalsit's length- regular measure- Borel and LebesgueMeasurability

Unit:2	Borel And Lebesgue Measure	18 hours
Borel And Leb Hausdorff Din Lebesgue"s M Dominated Con Integral	esgue Measure introduction– Hausdorff measures on the Renension - Integration of non-negative Functions -Fatou's onotone Convergence Theorem – General Integral – Lennvergence Theorem - Integration of series – Riemann and	al Line – Lemma- ebesgue"s Lebesgue
Unit:3	R-S Integral	18 hours
R-S Integral in Extension of a N Spaces – Integra Inequality – Co	troduction- Abstract Measures space – Measures and Outer Measure – Uniqueness of Extension - Completion of a Measure – ation with respect to a Measure – $L^p$ Spaces – Convex Functions – mpleteness.	Measures- - Measure –Jensen''s
Unit:4	Signed Measure	18 hours
Signed Measure	e introduction - Signed Measure and the Hahn Decomposition - I	Definition
Signed Measure of Positive Set Mutually singu Nikodym Theor	e introduction - Signed Measure and the Hahn Decomposition - I t, Negative Set, Null Set– the Jordan Decomposition –Def Ilar– Radon-Nikodym Theorem – Some Application of The rem – Randon-Nikodym derivation –Lebesgue Decomposition T	Definition inition of e Radon- Theorem
Signed Measure of Positive Set Mutually singu Nikodym Theor <b>Unit:5</b>	e introduction - Signed Measure and the Hahn Decomposition - I t, Negative Set, Null Set– the Jordan Decomposition –Def Ilar– Radon-Nikodym Theorem – Some Application of The rem – Randon-Nikodym derivation –Lebesgue Decomposition T Measurability in a Product Space	Definition inition of e Radon- Theorem <b>18 hours</b>
Signed Measure of Positive Set Mutually singu Nikodym Theor Unit:5 Measurability and Elementar -Definition of I	e introduction - Signed Measure and the Hahn Decomposition - I t, Negative Set, Null Set– the Jordan Decomposition –Def- llar– Radon-Nikodym Theorem – Some Application of The- rem – Randon-Nikodym derivation –Lebesgue Decomposition T Measurability in a Product Space in a Product Space introduction – Definition of Measurable Re- y Sets- Fubini''s Theorem– The Product Measure and Fubini''s Theorem– Theorem on Fubini''s Theorem – Theorem – Theorem on Fubini''s Theorem – Theorem – Theorem on Fubini''s Theorem – Theo	Definition inition of e Radon- Theorem Theorem ectangle Theorem corem
Signed Measure of Positive Set Mutually singu Nikodym Theor Unit:5 Measurability and Elementar -Definition of I	e introduction - Signed Measure and the Hahn Decomposition - I t, Negative Set, Null Set– the Jordan Decomposition –Def- llar– Radon-Nikodym Theorem – Some Application of Th- rem – Randon-Nikodym derivation –Lebesgue Decomposition T Measurability in a Product Space in a Product Space introduction – Definition of Measurable Re- y Sets- Fubini''s Theorem– The Product Measure and Fubini''s T Monotone Class- Fubini''s Theorem – Theorem on Fubini''s Theorem– Total Lecture hours	Definition inition of e Radon- Theorem Theorem ectangle Theorem corem 90 hours

Refere	nce Books
1	<b>I.K. Rana,</b> "An Introduction to Measure and Integration", Narosa Publishing House, NewDelhi,1999
2	H.L.Royden"Real Analysis", Prentice Hall of India 2001edition.
3	<b>P.R. Halmos,</b> "Measure Theory", D.VanNostrand Company, Inc. Princeton, N.J.,1950
4	D.L. Cohn, "Measure Theory", Birkhauser, Switzerland, 1980
Related	l Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/courses/111/107/111107103/
2	https://nptel.ac.in/courses/111/107/111107098/(Lec 51 to 55)
3	https://youtu.be/tfRZqIflEfQ

Mapping with Programme Outcomes											
COs	Pos	<b>PO1</b>	PO2	PO3	PO4	PO5	<b>PO6</b>	<b>PO7</b>	<b>PO8</b>	<b>PO9</b>	PO10
C01		Μ	Μ	L	Μ	Μ	Μ	Μ	S	L	S
CO2		Μ	Μ	L	Μ	Μ	L	S	Μ	Μ	Μ
CO3		L	Μ	Μ	Μ	L	L	S	Μ	Μ	Μ
CO4		L	Μ	Μ	L	Μ	L	Μ	S	Μ	S
CO5		Μ	Μ	Μ	S	Μ	Μ	S	S	L	S

Cou	rse code		Elective -IV:ELF PROCESSES	MENTS OI	STOCHAS	STIC	L	Т	Р	С
Sem	ester-IV	I					6	0	0	4
Cou	rse Objec	tives:								
The	main objec	ctives of thi	s course are to:							
1.	Acquire k	nowledge a	bout the concept of	of Markov Ch	ain and Que	ueingSyster	n.			
2.	Understan	d the meth	ods of Birth and D	eath queues	with Finite ar	nd InfiniteC	lapaci	ity.		
3.	Develop t	he ability o	f Standard Browni	anMotion.						
Expe	ected Cou	rse Outcor	nes:							
On	the succes	sful comple	etion of the course	, student will	be able to:					
1	Acquire	adequate k	nowledge about C	ontinuous Ti	me Markov	Chain and			K	1
	Queueir	ng Systems.								

2	Gain un Markov	nderstanding on the Renewal Process, Cumulative Process and Semi- v Process. K3						
3	Apply d	ifferent methods and solve Birth and Death queues.		K3				
4	Examin	Examine the computations of M/G/1 and G/M/1 Queues and Network of Queues. K4						
5	Concluc	Conclude the idea of Brownian Motion and First Passage Times. K5						
K1	- Rememb	er; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	; <b>K6</b> - Create					
Uni	it:1	<b>Continuous-Time Markov Models</b>	18h	ours				
Cor	ntinuous T	ime Markov Chain, Examples, Transient Analysis, Occupancy 7	Times, Limiti	ng				
Beh	navior.							
T I as	4.0	Concretized Morkey Medels	10	<b>.</b>				
Uni	1.2	Generalized Markov Models	18	nours				
Ren	newal Proc	ess, Cumulative Process, Semi-Markov Process, Examples and	Long term					
Ana	alysis.							
Uni	it:3	Oueueing Models	18	hours				
			10	nours				
Que	eueing Sys	tems, Single-Station Queues, Birth and Death queues with Finite	e and Infinite	liours				
Que Cap	eueing Sys bacity.	tems, Single-Station Queues, Birth and Death queues with Finit	e and Infinite	llouis				
Que Cap	eueing Syspacity.	tems, Single-Station Queues, Birth and Death queues with Finit	e and Infinite					
Que Cap Uni	eueing Sys bacity.	tems, Single-Station Queues, Birth and Death queues with Finite Queueing Models (Contd)	e and Infinite	hours				
Que Cap Uni M/C	eueing Sys pacity. i <b>t:4</b> G/1 and G/	tems, Single-Station Queues, Birth and Death queues with Finit Queueing Models (Contd) M/1 Queues and Network of Queues.	e and Infinite	hours				
Que Cap Uni M/C	eueing Sys bacity. d <b>t:4</b> G/1 and G/	tems, Single-Station Queues, Birth and Death queues with Finite Queueing Models (Contd) M/1 Queues and Network of Queues.	e and Infinite	hours				
Que Cap Uni M/C	eueing Sys pacity. it:4 G/1 and G/	tems, Single-Station Queues, Birth and Death queues with Finit Queueing Models (Contd) M/1 Queues and Network of Queues. Brownian Motion	e and Infinite 18 18 18	hours				
Que Cap Uni M/C Uni Star	eueing Sys pacity. it:4 G/1 and G/ it:5 ndard Broy	tems, Single-Station Queues, Birth and Death queues with Finite Queueing Models (Contd) M/1 Queues and Network of Queues. Brownian Motion wnian Motion, Brownian Motion and First Passage Times.	e and Infinite 18 18 18 18	hours				
Que Cap Uni M/C Uni Star	eueing Sys pacity. it:4 G/1 and G/ it:5 ndard Broy	tems, Single-Station Queues, Birth and Death queues with Finit Queueing Models (Contd) M/1 Queues and Network of Queues. Brownian Motion wnian Motion, Brownian Motion and First Passage Times.	e and Infinite 18 18 18	hours				
Que Cap Uni M/C Uni Star	eueing Sys pacity. it:4 G/1 and G/ it:5 ndard Broy	tems, Single-Station Queues, Birth and Death queues with Finit Queueing Models (Contd) M/1 Queues and Network of Queues. Brownian Motion wnian Motion, Brownian Motion and First Passage Times. Total Lecture hours	18 e and Infinite 18 18h 90	hours ours hours				
Que Cap Uni M/C Uni Star	eueing Sys pacity. it:4 G/1 and G/ it:5 ndard Broy	tems, Single-Station Queues, Birth and Death queues with Finit Queueing Models (Contd) M/1 Queues and Network of Queues. Brownian Motion wnian Motion, Brownian Motion and First Passage Times. Total Lecture hours	18 e and Infinite 18 18h 90	hours ours hours				

Te	ext Book(s)
1	V. G. Kulkarni, Introduction to Modelling and Analysis of Stochastic Systems, Second
	Edition, Springer, 2011.
Re	eference Books
1	J. Medhi, Stochastic Processes, New Age, 2009.
2	S. M. Ross, Stochastic Processes, Wiley Series in Probability and Statistics, 1996.
Re	elated Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]
1	https://nptel.ac.in/courses/111/102/111102014/#
2	https://nptel.ac.in/courses/111/102/111102014/#
3	https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=2145&context=gradreports

Mapping with Programme Outcomes											
COs	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1		Μ	S	Μ	S	Μ	S	S	L	S	S
CO2		S	Μ	L	Μ	L	Μ	L	Μ	S	Μ
CO3		S	S	Μ	Μ	Μ	Μ	S	L	Μ	Μ
CO4		Μ	Μ	S	S	S	S	Μ	Μ	S	S
CO5		Μ	Μ	Μ	S	Μ	Μ	S	Μ	S	S

Course code			<b>Elective-IV: CONTROL THEORY</b>	L	Т	Р	С		
Sem	ester-IV			6	0	0	4		
Cou	rse Object	tives:							
The	main objec	ctives of thi	s course are to:						
1. Understand the concepts of Observability, Controllability and Stability.									
2.	Gain know	vledge abou	it linear time varyingsystems.						
3.	Develop t	he ability of	f solving linear feedbackcontrol.						
Expe	ected Cou	rse Outcon	nes:						
On	the succes	sful comple	etion of the course, student will be able to:						
1	Explain	observabili	ty and estimate the observability of constant			K	2		
	coefficie	ent system,	linear, nonlinear system, and discuss reconstruction	1					
	kernel.								
2	Apply c	ontrollabilit	ty criteria to constant coefficient system, linear,			K	3		
	nonlinea	ar system, a	nd explain steering function.						
3	Analyze	the stabilit	y of linear system, linear time varying system, pert	urbe	d	K	4		
	linear sy	stem and n	onlinear system.						
4	Evaluate	e stabilizabi	lization via linear feedback control, Bass method.			K	5		
5	Analyze	controllab	le subspace, and stabilization with restricted feedba	ck.		K	4		
K1	- Rememb	oer; <b>K2</b> - Ui	nderstand; K3 - Apply; K4 - Analyze; K5 - Evaluat	e; <b>K</b>	<b>16</b> - C	reate			
Unit:1			Observability 1						
Lin	ear Systen	ns – Observ	abilityGrammian – Constant coefficient systems –						
Rec	constructio	n kernel – I	Nonlinear Systems.						

Unit:2	Controllability	18hours							
Linear systems – Controllability Grammian – Adjoint systems – Constant coefficient systems									
– steering function – Nonlinear systems.									
Unit:3	Stability	18hour							
		S							
Stability – U	niform Stability – Asymptotic Stability of Linear Systems.								
Unit:4	Perturbed Linear Systems	18hour							
		S							
Linear time va	Linear time varying systems – Perturbed linear systems – Nonlinear systems.								
Unit:5	Stabilizability	18hour							
		S							
Stabilization v	via linear feedback control – Bass method – Controllable subspa	ace – Stabilization							
with restricted feedback.									
	Total Lecture hours	90hour							
		S							

Те	Text Book(s)								
1	1 K. Balachandran and J. P. Dauer, Elements of Control Theory, Narosa, New Delhi, 1999.								
Re	Reference Books								
1	R. Conti, Linear Differential Equations and Control, Academic Press, London, 1976.								
2	R. F. Curtain and A. J. Pritchard, Functional Analysis and Modern Applied Mathematics, Academic Press, New York, 1977.								
3	J. Klamka, Controllability of Dynamical Systems, Kluwer Academic Publisher, Dordrecht, 1991.								
4	D. L. Russell, Mathematics of Finite Dimensional Control Systems, Marcel Dekker, New York, 1979.								
5	E. B. Lee and L. Markus, Foundations of optimal Control Theory, John Wiley, New York, 1967.								
Re	Related Online Contents [MOOC, SWAYAM, NPTEL, Websites etc.]								
1	https://www.youtube.com/watch?v=39Ggoj2fQ2c								
2	https://nptel.ac.in/courses/115/108/115108104/								
3	https://nptel.ac.in/courses/107/106/107106081/								

Mapping with Programme Outcomes											
COs	POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1		S	Μ	Μ	L	S	S	Μ	L	Μ	Μ
CO2		Μ	Μ	S	Μ	Μ	Μ	Μ	Μ	Μ	S
CO3		S	S	Μ	Μ	Μ	Μ	S	S	S	S
<b>CO4</b>		Μ	Μ	S	S	S	S	L	Μ	S	Μ
CO5		S	S	Μ	S	M	Μ	L	Μ	Μ	M

Cou	rse code		Core Pape	er XV: P	roject		L	Т	Р	C
Semester-IV							12	0	0	4
Cou	rse Object	tives:								
The	main objec	ctives of thi	course are to:							
1	l. To study	the basic c	oncepts related to	the Project	et work.					
2	2.To know	the respect	ve research fields							
3.To 1	know the c	concept of v	riting a dissertatio	on in an ef	fectiveway	у.				
Erm										
Exp	Expected Course Outcomes:									
On	the succes	sful comple	tion of the course,	, student v	will be able	e to:				
1 Applying the relative notions in the respective areas and finding the results							K	4		
2	2 Analyzing results with the existing results.							K	5	
3	3 Interpreting the results with suitable examples.						K4			
4	4 Acquire knowledge in their area of interest.							K2		
5	Promote	techniques of	f research						K	.5

K1 - Remember; K2 - Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate; K6 - Create