ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN (AUTONOMOUS) CHINNAKALAYAMPUTHUR PALANI – 624 615

PG DEPARTMENT OF PHYSICS

B.Sc Degree - Physics

SYLLABUS UNDER CHOICE BASED CREDIT SYSTEM 2023 Onwards

Prescribed by

TAMILNADU STATE COUNCIL FOR HIGHER EDUCATION, CHENNAI – 600 005

ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN PALANI

B.Sc Physics

MISSION

- > To motivate the students to equip with modern trend technical knowledge
- > To visit state of the Electrical Electronic Industries and Astronomical Research Centers
- > To encourage and guide research oriented Higher Studies through enriched curriculum
- > To introduce career oriented Electives and Project works.
- To inculcate scientific attitude among younger generation through Hands on Training and Science Exhibitions.
- > To incorporate discipline, dedication and committed work culture through Value Education.
- > To Empower Revolutionary Excellence in electronic intelligence.

VISION

- > Up gradation of UG Department to PG Department
- > Introduction of current trend Electronic Technical Know-Hows in Curriculum
- Preparing Industry ready citizens
- Promoting Academic Excellence with Discipline

B.Sc., PHYSICS SYLLABUS

Preamble

Physics is one of the basic and fundamental sciences. The curriculum for the undergraduate programme in Physics is revised as per the UGC guidelines on Learning Outcome based Course Framework. The learner-centric courses let the student progressively develop a deeper understanding of various aspects of physics.

The new curriculum offer courses in the core areas of mechanics, acoustics, optics and spectroscopy, electricity and magnetism, atomic and nuclear physics, solid state, electronics and other fields. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. In addition to the theoretical course work, the students also learn physics laboratory methods for different branches of physics, specialized measurement techniques, analysis of observational data, including error estimation and etc. The students will have deeper understanding of laws of nature through the subjects like classical mechanics, quantum mechanics, statistical physics etc. The problem solving ability of students will be enhanced. The students can apply principles in physics to real life problems. The courses like integrated electronics and microprocessors will enhance the logical skills as well as employability skills. The numerical methods and mathematical physics provide analytical thinking and provides a better platform for higher level physics for research.

The restructured courses with well-defined objectives and learning outcomes, provide guidance to prospective students in choosing the elective courses to broaden their skills not only in the field of physics but also in interdisciplinary areas. The elective modules of the framework offer students choice to gain knowledge and expertise in specialized domains of physics like astrophysics, medical physics, etc.

TANSCHE REGULATIONS ON LEARNING OUTCOMES-BASED CURRICULUM

FRAMEWORK FOR					
	UNDERGRADUATE EDUCATION				
Programme	B.Sc., Physics				
Programme Code					
Duration	3 years [UG]				
Programme	PO1: Disciplinary knowledge:				
Outcomes:	Capable of demonstrating comprehensive knowledge and understanding of one or				
(These are	more disciplines that form a part of an undergraduate programme of study				
mereguidelines.	PO2: Communication Skills:				
Faculty can create	Ability to express thoughts and ideas effectively in writing and orally communicate				
POs based on their	with others using appropriate media; confidently share one's views and express				
curriculum or adopt	opt herself/himself; demonstrate the ability to listen carefully; read and write				
from UGC or the	analytically and present complex information in a clear and concise manner to				
University for their	different groups.				
Programme)	PO3: Critical thinking:				
	Capability to apply the analytic thought to a body of knowledge; analyse and evaluate the proofs, arguments, claims, beliefs on the basis of empirical evidences; identify relevant assumptions or implications; formulate coherent arguments; critically evaluate practices, policies and theories by following scientific approach. PO4: Problem solving:				
	Capacity to extrapolate from what one has learned and apply their competencies to solve different kinds of non-familiar problems, rather than replicate curriculum content knowledge; and apply one's learning to real life situations. PO5: Analytical reasoning: Ability to evaluate the reliability and relevance of evidence; identify logical flaws and holes in the arguments of others; analyze and synthesize data from a variety of				

sources; draw valid conclusions and support them with evidence and examples, and addressing opposing viewpoints.

PO6: Research-related skills:

A sense of inquiry and capability for asking relevant/appropriate questions, problem arising, synthesising and articulating; Ability to recognise cause-and-effect relationships, define problems, formulate hypotheses, test hypotheses, analyse, interpret and draw conclusions from data, establish hypotheses, predict cause-andeffect relationships; ability to plan, execute and report the results of an experiment or investigation

PO7: Cooperation/Team work:

Ability to work effectively and respectfully with diverse teams; facilitate cooperative or coordinated effort on the part of a group, and act together as a group or a team in the interests of a common cause and work efficiently as a member of a team

PO8: Scientific reasoning:

Ability to analyse, interpret and draw conclusions from quantitative/qualitative data; and critically evaluate ideas, evidence and experiences from an open-minded and reasoned perspective.

PO9: Reflective thinking:

Critical sensibility to lived experiences, with self-awareness and reflexivity of both self and society.

PO10 Information/digital literacy:

Capability to use ICT in a variety of learning situations, demonstrate ability to access, evaluate, and use a variety of relevant information sources; and use appropriate software for analysis of data.

PO 11 Self-directed learning:

Ability to work independently, identify appropriate resources required for a project, and manage a project through to completion.

PO 12 Multicultural competence:

Possess knowledge of the values and beliefs of multiple cultures and a global perspective; and capability to effectively engage in a multicultural society and interact respectfully with diverse groups.

PO 13: Moral and ethical awareness/reasoning:

Ability to

embrace moral/ethical values in conducting one's life, formulate a position/argument about an ethical issue from multiple perspectives, and use ethical practices in all work. Capable of demonstrating the ability to identify ethical issues related to one's work, avoid unethical behaviour such as fabrication, falsification or misrepresentation of data or committing plagiarism, not adhering to intellectual property rights; appreciating environmental and sustainability issues; and adopting objective, unbiased and truthful actions in all aspects of work.

PO 14: Leadership readiness/qualities:

Capability for mapping out the tasks of a team or an organization, and setting direction, formulating an inspiring vision, building a team who can help achieve the vision, motivating and inspiring team members to engage with that vision, and using management skills to guide people to the right destination, in a smooth and efficient way.

PO 15: Lifelong learning:

Ability to acquire knowledge and skills, including "learning how to learn", that are necessary for participating in learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social and cultural objectives, and adapting to changing trades and demands of work place through knowledge/skill development/reskilling.

Programme Specific	PSO1: Placement:				
Outcomes:	To prepare the students who will demonstrate respectful engagement with others'				
(These are mere	deas, behaviors, and beliefs and apply diverse frames of reference to decisions and				
guidelines. Faculty	actions.				
can create POs based	PSO 2: Entrepreneur:				
on their curriculum	To create effective entrepreneurs by enhancing their critical thinking, problem				
or adopt from UGC	solving, decision making and leadership skill that will facilitate start-ups and high				
or University for	potential organizations				
their Programme)	PSO3: Research and Development:				
	Design and implement HR systems and practices grounded in research that comply				
	with employment laws, leading the organization towards growth and development.				
	PSO4: Contribution to Business World:				
	To produce employable, ethical and innovative professionals to sustain in the				
	dynamic business world.				
	PSO 5: Contribution to the Society:				
	To contribute to the development of the society by collaborating with stakeholders				
	for mutual benefit				

SEMESTERWISE DISTRIBUTION WITH SCHEME OF EXAMINATION – (CBCS)

(For candidates admitted during the Academic year 2023 - 2024)

DEPARTMENT OF PHYSICS – B.Sc Degree Program

Choice Based Credit System (CBCS), Learning Outcomes Based Curriculum Framework (LOCF) Guideline Based Credit and Hours Distribution System for all UG courses including Lab Hours

First Year

Semester -I

				Hours Marks			·ks
Class	Part	Title of the course	Credit	Theory/ Practical	Int	Ext	Total
	Part-I	Tamil	3	6	25	75	100
	Part- II	English	3	6	25	75	100
I-B.Sc		Core Course -I-CC1 Properties of Matter and Acoustics	5	5	25	75	100
		Core Course II – Physics Practical - I	4	4	25	75	100
	Part- III	Allied I – Allied Mathematics 1	2	3	25	75	100
		Allied Practical 1 – Allied Practical 1	2	2	25	75	100
	Part- IV	Skill Enhancement Course SEC-1 NME I - Astrophysics	2	2	25	75	100
	1 V	Foundation Course -Introductory Physics	2	2	25	75	100
		Total	23	30			

Semester -II

			H	ours	Marks		
Class	Part	Title of the course	Credit	Theory/ Practical	Int	Ext	Total
	Part-I	Tamil	3	6	25	75	100
	Part-II	English	3	6	25	75	100
		Core course III CC3 – Heat, Thermodynamics and Statistical Physics	5	5	25	75	100
	Part-III	Core course IV CC4 – Physics Practical II	4	4	25	75	100
I-B.Sc		Allied II – Allied Mathematics II	2	3	25	75	100
1-в.5с		Allied II – Allied Mathematics Practicals II	2	2	25	75	100
		Skill Enhancement Course SEC-2 NME II - Physics for Everyday Life	2	2	25	75	100
	Part-IV	Skill Enhancement Course -SEC-3 Nano Science and Nano Technology	2	2	25	75	100
		Total	23	30			

Second Year

Semester -III

					Marks			
Class	Part	Title of the course	Credit	Theory / Practical	Int	Ext	Total	
	Part-I	Tamil	3	6	25	75	100	
	Part-II	English	3	6	25	75	100	
		Core course V – Mechanics	4	4	25	75	100	
	Part-III	Core Course VI – Physics Practical III	4	4	25	75	100	
		Allied 1 – Allied Chemistry 1 Allied I1 – Allied Chemistry	2	3	25	75	100	
II-B.Sc		Practical II	2	2	25	75	100	
			Skill Enhancement Course -SEC-4 (Entrepreneurial Based) SEC4- Fundamentals of Computer and Ms Office	2	2	25	75	100
	Part-IV	Skill Enhancement Course -SEC-5 Astronomy	2	2	25	75	100	
		EVS – Environmental Science	-	1				
		Total	22	30				

Semester -IV

						Marl	KS
Class	Part	Title of the course	Credit	Theory/ Practical	Int	Ext	Total
	Part-I	Tamil	3	6	25	75	100
	Part-II	English	3	6	25	75	100
		Core course VII – Optics and Laser Physics	5	5	25	75	100
	Part-III	Core Course VIII – Physics Practical IV	4	3	25	75	100
		Allied II– Allied Chemistry II	2	3	25	75	100
II-B.Sc		Allied Practical II – Allied Chemistry Practical II	2	2	25	75	100
		Skill Enhancement Course -SEC-6 Computer Programming in 'C'	2	2	25	75	100
		Skill Enhancement Course -SEC-7 Biomedical Instrumentation	2	2	25	75	100
	Part-IV	EVS	2	1	25	75	100
		Total	25	30			

Third Year

Semester -V

			Marks					
Class	Part	Title of the course	Credit	Theory / Practical	Int	Ext	Total	
		Core Course IX – Electricity, Magnetism and Electromagnetism	4	5	25	75	100	
		Core Course X – Atomic and Nuclear Physics	4	5	25	75	100	
		Core Course XI – Analog and Communication Electronics	4	5	25	75	100	
	Part-III	Core Course XII - Physics Practical V	4	4	25	75	100	
III- B.Sc		Elective Course I - EC 1 Option 1- Laser and Fiber Optics Option 2 - Mathematical Physics	3	4	25	75	100	
		Elective Course II - EC 2 Option 1 - Communication Physics(or) Option 2 – Digital Photography	3	5	25	75	100	
		Value Education	2	2	25	75	100	
	Part-IV	Internship / Industrial Training (Carried out in II Year Summer Vocation) (30 Hours)	2	-	100	-	100	
		Total	26	30	-	-	-	

			Marks						
Class	Part	Part Title of the course		Theory /Practical	Int	Ext	Total		
		Core Course XIII – Solid State Physics	Credit 3	5	25	75	100		
		Core Course XIV – Digital Electronics and Microprocessor 8085	3	5	25	75	100		
III-		Core Course XV – Physics Practical VI	3	4	25	75	100		
B.Sc	Part-III	Part-III	Core Course XVI – Project	3	4	25	75	100	
		Elective Course III - EC 3 Option 1- Energy Physics (or) Option 2 -Medical Instrumentation	3	5	25	75	100		
		Elective Course IV -EC 4 - Option 1-Materials Science (or) Option 2 Advanced Mathematical Physics	3	5	25	75	100		
	Part-IV	Skill Enhancement Course -SEC-8 - Computer Programming in 'C' - Practical	2	2	25	75	100		
	Part-V	Extension Activity, NSS/NCC/YRC/Physical Education (Outside College Hours)	1	-	100	-	100		
		Total	21	30					

Semester -VI

EXTRA CREDIT COURSES:

Semester I	Energy Harvesting - I
Semester III	Electrical appliances
Semester V	Energy Harvesting - II

VALUE ADDED COURSE:

Semester II	Lab equipment training
Semester IV	Designing & Fabrication of PCB
Semester VI	Opto electronic devices

FIRST SEMESTER -CORE THEORY 1 -PROPERTIES OF MATTER AND ACOUSTICS

COURSE	FIRS	FIRST SEMESTER -COREPAPER (THEORY) 1					
COURSE TITLE	PRO	ROPERTIES OF MATTER AND ACOUSTICS					
CREDITS 5		Hours	C	CIA	25	CE 75	
COURSE	Study	of the properties of	f m	atte	r leads to infor	mation which is of	
OBJECTIVES	inforn consti are su	Study of the properties of matter leads to information which is of practical value to both the physicist and the engineers. It gives us information about the internal forces which act between the constituent parts of the substance. Students who undergo this course are successfully bound to get a better insight and understanding of the subject.					

UNITS	COURSEDETAILS
UNIT-I	ELASTICITY: Hooke's law – stress-strain diagram – elastic constants –Poisson's ratio – relation between elastic constants and Poisson's ratio – work done in stretching and twisting a wire – twisting couple on a cylinder – rigidity modulus by static torsion– torsional pendulum (with and without masses)
UNIT-II	BENDING OF BEAMS: cantilever– expression for Bending moment – expression for depression at the loaded end of the cantilever– oscillations of a cantilever – expression for time period – experiment to find Young's modulus – non-uniform bending– experiment to determine Young's modulus by Koenig's method – uniform bending – expression for elevation – experiment to determine Young's modulus using microscope
UNIT-III	FLUID DYNAMICS: <i>Surface tension</i> : definition – molecular forces– excess pressure over curved surface – application to spherical and cylindrical drops and bubbles – determination of surface tension by Jaegar's method–variation of surface tension with temperature <i>Viscosity</i> : definition – streamline and turbulent flow – rate of flow of liquid in a capillary tube – Poiseuille's formula –corrections – terminal velocity and Stoke's formula– variation of viscosity with temperature
UNIT-IV	 WAVES AND OSCILLATIONS: Simple Harmonic Motion (SHM) – differential equation of SHM – graphical representation of SHM – composition of two SHM in a straight line and at right angles – Lissajous's figures- free, damped, forced vibrations –resonance and Sharpness of resonance. Laws of transverse vibration in strings –sonometer – determination of AC frequency using sonometer–determination of frequency using Melde'sstring apparatus
UNIT-V	ACOUSTICS OF BUILDINGS AND ULTRASONICS: Intensity of sound – decibel – loudness of sound –reverberation – Sabine's reverberation formula – acoustic intensity – factors affecting the acoustics of buildings. <i>Ultrasonic waves</i> : production of ultrasonic waves – Piezoelectric crystal method –magnetostriction effect – application of ultrasonic waves

	PROFESSIONAL COMPONENTS: expert lectures –seminars —
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. D.S.Mathur, 2010, Elements of Properties of Matter,
	S.Chandand Co.
	2. BrijLaland N. Subrahmanyam, 2003, Properties of Matter,
	S.Chandand Co
TEXT BOOKS	3. D.R.KhannaandR.S.Bedi, 1969, Textbook of Sound,
	AtmaRamand sons
	4. BrijLal and N.Subrahmanyam, 1995, A Text Book of Sound,
	Second revised edition, Vikas Publishing House.
	5. R.Murugesan, 2012, Properties of Matter, S.Chandand Co.
	1. C.J. Smith, 1960, General Properties of Matter, Orient Longman
	Publishers
REFERENCE	2. H.R.Gulati, 1977, Fundamental of General Properties of Matter,
BOOKS	Fifth edition, R. Chand and Co.
	3. A.P French, 1973, Vibration and Waves, MIT Introductory
	Physics, Arnold-Heinmann India.
	1. https://www.biolinscientific.com/blog/what-are-surfactants-and-
	how-do-they-work
	2. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.html</u>
	3. <u>https://www.youtube.com/watch?v=gT8Nth9NWPM</u>
WED	4. <u>https://www.youtube.com/watch?v=m4u-SuaSu1sandt=3s</u>
WEB	5. https://www.biolinscientific.com/blog/what-are-surfactants-and-
RESOURCES	how-do-they-work
	6. https://learningtechnologyofficial.com/category/fluid-mechanics-
	lab/
	7. http://www.sound-physics.com/
	8. http://nptel.ac.in/courses/112104026/

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy / Cognitive Domain
	CO1	Relate elastic behavior in terms of three modulii of elasticity and working of torsion pendulum.	K1 & K2
	CO2	Able to appreciate concept of bending of beams and analyze the expression, quantify and understand nature of materials.	K2
COURSEOU TCOMES	CO3	Explain the surface tension and viscosity of fluid and support the interesting phenomena associated with liquid surface, soap films provide an analogue solution to many engineering problems.	K2
	CO4	Analyze simple harmonic motions mathematically and apply them. Understand the concept of resonance and use it to evaluate the frequency of vibration. Set up experiment to evaluate frequency of ac mains	K2 & K3

С	C O 5	Understand the concept of acoustics, importance of	K1 & K3
		constructing buildings with good acoustics.	
		Able to apply their knowledge of ultrasonics in real life,	
		especially in medical field and assimilate different methods	
		of production of ultrasonic waves	

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	М	S	М	М	S	М	S
CO2	М	S	S	S	М	М	S	М	S	S
CO3	S	М	S	М	S	S	М	S	S	S
CO4	S	S	S	S	S	М	S	М	М	М
CO5	М	М	S	S	М	S	S	S	S	М
			PS	01	PSO2	PSO	3	PSO4]	PSO5
CO1				3	3	3		3		3
CO2				3	2	2	,	3		3
CO3				3	2	3		3		3
CO4	CO4			3	3	3		3		3
CO5	CO5			3	3	3		3		3
WEITAGE			15	13	14	4	15		15	
0	Weighted percentage of			3.0	2.6	2.	8	3.0		3.0
course co POS	ontribut	tion to								

FIRST SEMESTER -CORE PRACTICAL- 1

COURSE	FIRST SEMESTER -CORE PAPER II -PRACTICAL 1				
COURSETITLE	PRACTIC	AL I			
CREDITS 4		Hours	4	CIA 25	CE 75
COURSE	Apply vari	ous physic	es concep	ots to understan	nd Properties of Matter,
OBJECTIVES	set up expe	erimentatio	on to veri	fy theories, qua	antify and analyse, able
	to do error				

Properties of Matter

Minimum of Eight Experiments from the list:

- 1. Determination of rigidity modulus without mass using Torsional pendulum.
- 2. Determination of rigidity modulus with masses using Torsional pendulum.
- 3. Determination of moment of inertia of an irregular body.
- 4. Verification of parallel axes theorem on moment of inertia.
- 5. Verification of perpendicular axes theorem on moment of inertia.
- 6. Determination of moment of inertia and g using Bifilar pendulum.
- 7. Determination of Young's modulus by stretching of wire with known masses.

- 8. Verification of Hook's law by stretching of wire method.
- 9. Determination of Young's modulus by uniform bending load depression graph.
- 10. Determination of Young's modulus by non-uniform bending scale and telescope.
- 11. Determination of Young's modulus by cantilever load depression graph.
- 12. Determination of Young's modulus by cantilever oscillation method
- 13. Determination of Young's modulus by Koenig's method (or unknown load)
- 14. Determination of rigidity modulus by static torsion.
- 15. Determination of Y, n and K by Searle's double bar method.
- 16. Determination of surface tension and interfacial surface tension by drop weight method.
- 17. Determination of co-efficient of viscosity by Stokes' method terminal velocity.
- 18. Determination of critical pressure for streamline flow.
- 19. Determination of Poisson's ratio of rubber tube.
- 20. Determination of viscosity by Poiseullie's flow method.
- 21. Determination radius of capillary tube by mercury pellet method.
- 22. Determination of g using compound pendulum.

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy / Cognitive Domain
		Apply knowledge of mathematics, physics and instrumentation	K2
	CO2	Use standard methods to calibrate the given measuring instruments	K2
COURSE OUTCOMES		Learning a experience in properties of matter as elastic nature of materials	К3
	CO4	Acquire the practical knowledge of surface tension and viscosity	К3
	CO5	Able to do error analysis and correlate results	K2

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	М	М	S	S	М	S
CO2	М	М	S	S	М	S	М	М	М	М
CO3	S	М	S	S	М	М	S	S	М	S
CO4	М	М	М	М	S	S	М	S	S	М
CO5	S	М	S	S	S	S	S	S	М	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	2	2	3	3
CO3	3	2	3	3	3

CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	13	14	15	15
Weighted percentage of course contribution to	3.0	2.6	2.8	3.0	3.0
POS					

ALLIED PAPER

COURSE	ALLIED PAR	PER			
COURSETITLE	ALLIED PH	ALLIED PHYSICS – I			
CREDITS – 2	Hours	3	CIA 25	CE 75	
COURSE	To impart bas	ic princ	ciples of Physics that	which would be helpful	
OBJECTIVES	for students w	ho have	taken programmes oth	her than Physics.	

UNITS	COURSE DETAILS
UNIT-I	 WAVES, OSCILLATIONS AND ULTRASONICS: simple harmonic motion (SHM) – composition of two SHMs at right angles (periods in the ratio 1:1) – Lissajous figures – uses – laws of transverse vibrations of strings – determination of AC frequency using sonometer (steel and brass wires) – ultrasound – production – piezoelectric method – application of ultrasonics: medical field – scientific field and chemical applications.
UNIT-II	PROPERTIES OF MATTER: Elasticity: elastic constants – bending of beam- determination of Young's modulus by non-uniform bending – energy stored in a stretched wire – torsion of a wire – determination of rigidity modulus by torsional pendulum. Viscosity: streamline and turbulent motion – critical velocity – coefficient of viscosity – Poiseuille's formula – comparison of viscosities – burette method, Surface tension: definition – molecular theory – droplets formation– shape, size.
UNIT-III	HEAT AND THERMODYNAMICS: Joule-Kelvin effect – Joule- Thomson porous plug experiment – theory – temperature of inversion laws of thermodynamics zeroth law, first law, second law and third law of thermodynamics– heat engine – Carnot's cycle – efficiency – entropy – change of entropy in reversible and irreversible process.
UNIT-IV	ELECTRICITY AND MAGNETISM: potentiometer – principle – measurement potential using potentiometer –calibration of low range voltmeter–magnetic field due to a current carrying codnuctor – Biot- Savart's law – field along the axis of the coil carrying current – peak, average and RMS values of ac current and voltage – power factor and current values in an AC circuit – types of switches in household and factories.
UNIT-V	DIGITAL ELECTRONICS AND DIGITAL INDIA: logic gates, OR, AND, NOT, NAND, NOR, EXOR logic gates –NAND and NOR as universal building blocks – Boolean algebra – De Morgan's theorem – verification – overview of Government initiatives: semiconductor laboratories under Dept. of Space – an introduction to

	Digital India
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R.Murugesan (2001), AlliedPhysics,S. ChandandCo,NewDelhi. Brijlal and N.Subramanyam (1994), Waves and Oscillations, Vikas Publishing House,NewDelhi. Brijlal and N.Subramaniam (1994), Properties of Matter, S.Chand and Co., NewDelhi. J.B.Rajam and C.L.Arora (1976). Heat and Thermodynamics (8th edition), S.Chand and Co., New Delhi. R.Murugesan(2005), Optics and Spectroscopy,S.ChandandCo,NewDelhi. A.Subramaniyam, Applied Electronics 2ndEdn. ,National Publishing Co. ,Chennai.
REFERENCE BOOKS	 Resnick Halliday and Walker (2018). Fundamentals of Physics (11thedition), John Willeyand Sons, Asia Pvt. Ltd., Singapore. V.R. Khanna and R.S. Bedi (1998), TextbookofSound1stEdn. Kedharnaath PublishandCo, Meerut. N.S.Khare and S.S.Srivastava (1983), ElectricityandMagnetism10thEdn.,AtmaRam and Sons, New Delhi. D.R.Khanna and H.R.Gulati(1979). Optics,S. Chand and Co.Ltd.,New Delhi. V.K.Metha(2004).Principlesofelectronics6thEdn. S.Chandandcompany.
WEB RESOURCES	 https://youtu.be/M_5KYncYNyc https://youtu.be/IjJLJgIvaHY https://youtu.be/7mGqd9HQ_AU https://youtu.be/h5jOAw57OXM https://learningtechnologyofficial.com/category/fluid- mechanics-lab/ http://hyperphysics.phy- astr.gsu.edu/hbase/permot2.htmlhttps://www.youtube.com/w atch?v=gT8Nth9NWPMhttps://www.youtube.com/watch?v= 9mXOMzUruMQandt=1shttps://www.youtube.com/watch?v <u>suaSu1sandt=3shttps://www.biolinscientific.com/blog/what- are-surfactants-and-how-do-they-work</u>

At the end of the course, the student will be able to:

СО		Statements	Blooms Taxonomy
	CO1	Understand the simple harmonic motion and extend their knowledge in the study of various cases. Gain knowledge of Ultrasonics.	level K1 & K2
COURSE OUTCOMES	CO2	Understand the materials and their behaviors and apply it to various situation in laboratory and real life.	K1 & K3
	CO3	Understand the basic concepts of thermodynamics, entropy and associated theorems. Acquire the knowledge of low temperature Physics.	K1 & K2

CO4	Acquire knowledge of electricity and magnetism. Correlate the connection between electric field and magnetic field	K1 & K2
CO5	Understand the digital electronics principles. Using Boolean algebra acquire the elementary idea of digital circuits. Acquire information about various Govt. programs/ institutions in this field.	K1 & K2

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point Scale of STRONG (S), MEDIUM (M) and LOW(L).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	2	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	14	14	15	15	15
Weighted percentage of course contribution to	2.8	2.8	3.0	3.0	3.0
POS					

COURSE	ODD SEMESTER - CORE					
COURSE TITLE	ALLIED PRACTICAL- I					
CREDITS - 2	Hours 2	CIA 25	CE 75			
COURSE OBJECTIVES	Apply various physics concepts to understand Properties of Matter and waves, set up experimentation to verify theories, quantify and					
	analyse, able to do e	rror analysis and correlat	e results			

Minimum of Eight Experiments from the list:

- 1. Young's modulus by non-uniform bending using pin and microscope
- 2. Young's modulus by non-uniform bending using optic lever, scale and telescope
- 3. Rigidity modulus by static torsion method.
- 4. Rigidity modulus by torsional oscillations without mass
- 2. Surface tension and interfacial Surface tension drop weight method
- 3. Comparison of viscosities of two liquids burette method
- 4. Specific heat capacity of a liquid half time correction
- 5. Verification of laws of transverse vibrations using sonometer
- 6. Calibration of low range voltmeter using potentiometer
- 7. Determination of thermo emf using potentiometer
- 8. Verification of truth tables of basic logic gates using ICs
- 9. Verification of De Morgan's theorems using logic gate ICs.
- 10. Use of NAND as universal building block.

At the end of the course, the student will be able to:

CO	Statement	Blooms Taxonomy level
CO1	Acquire practical skills on basic principles of Physics.	K2
CO2	Enable the students acquire practical knowledge with lecture sessions translated to the laboratory sessions.	К3
CO3	Gain knowledge and understanding the components and handling equipments.	К3
CO4	Provide a hands-on learning in using simple equipments.	К3
CO5	Get knowledge to verify the experimental results with theoretical values.	К3
	K1 - Remembering K2-Understanding K3-Ap	oplying

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	М	S	S	S	М	М
CO2	М	М	S	М	S	М	S	М	S	S
CO3	S	М	М	S	М	М	S	S	М	S
CO4	М	М	S	S	S	S	М	S	М	М
CO5	S	S	М	S	S	М	S	S	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	2	3	3	3	3
CO5	3	3	3	3	3
Weightage	14	15	15	15	15
Weighted percentage of course contributin to POS	2.8	3	3	3	3

NON MAJOR ELECTIVES (NME)

NME	T

NME I ASTROPHYSICS							
Credits	2	Hours	2	CIA	25	CE 75	
Learning Object science of format	ive: This count ion and evolut tanding of the	se intends on of stars physical n	to int and i ature	nterpre	tation of various	trophysics describing the heavenly phenomena and with the instrumentation	
	ed in astronom			PHYSI	CS		
science of format provide an unders and techniques us	ion and evolut standing of the	se intends ion of stars physical i	tointr s and i nature ch	oduce nterpre of cele	principles of ast tation of various stialbodies along	trophysics describing the heavenly phenomena and with the instrumentation	
UNITS					SE DETAILS		
UNIT-I	power and f/	a ratio – t	ypes o	of reflect		wer, brightness, resolving ng telescopes – detectors ce telescope.	
UNIT-II	comets, aster – recent adva	oids – Kui nces in ast	per be rophys	lt – Oo sics.	rt cloud – detecti	es – meteors, meteorites, on of gravitational waves	
UNIT-III	ECLIPSES: types of eclipses – solar eclipse – total and partial solar eclipse – lunar eclipse – total and partial lunar eclipse – transits. THE SUN: physical and orbital data – solar atmosphere – photosphere – chromosphere – solar corona – prominences – sunspots – 11year solar cycle – solar flares.						
UNIT-IV	intermediate neutron stars GALAXIES	mass and – pulsars – : classifica	massi - black ation	ve stars holes - of gala	s – Chandraseka - supernovae.	and death of low mass, r limit – white dwarfs – clusters –interactions of verse.	
UNIT-V	ACTIVITIE (i) Basic co (ii) Develop (iii) Night sk (iv) Conduct (v) Visit to a	S IN AST nstruction models to y observati case study any one of	ROPH of tele demon ion pertai the Na	IYSICS scope instrate of ining to itional (v motion	
TEXT BOOKS	 Baidyana Prentice - K.S.Krish Internatic Shylaja, 1 	thBasu, (20 - Hall of In maswamy, nal (P) Lt	001). <u>4</u> dia (P) (2002 td, Ne adhusu	An intro) Ltd, N), <u>Astro</u> w Delh	oduction to Astro New Delhi ophysics – a mode i.	physics, Second printing, ern perspective, New Age spse: A Celestial Shadow	

<u>COURSE OUTCOMES:</u> At the end of the course, the student will be able to:

CO	Statements	Bloom's
		Taxonomy
		level
	Understand the electromagnetic radiation from celestial objects. Analyze	
	the wave nature of light in the form of ray diagram. Apply the knowledge of	

	phenomenon of how diffraction limits the resolution of any system having a lens or mirror. Distinguish between reflecting and refracting telescopes and their usage.	
CO2	Recall and explain solar system and to know the recent advances in astrophysics	K3
CO3	Understand the basics of eclipse and its types	K2
CO4	Have a deep knowledge of fundamentals of stellar evalution	K1&K2
CO5	Remember and illustrate the structure of our Milky way galaxy. Classify the types of galaxies. Understand the presence of dark matter in the universe	К3

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	S	S	S	S	S	S	S	S	S	S

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	15	15
Weighted percentage of course contribution to Pos	3	2.8	3	3	3

FIRST SEMESTER – FOUNDATION COURSE- INTRO DUCTORY PHYSICS

COURSE	FIRST SEMESTER – FOUNDATION COURSE
COURSE TITLE	INTRODUCTORY PHYSICS

CREDITS - 2		Hours - 2	CIA 25	CE 75
COURSE OBJECTIVES	To help students get an over To serve as a bridge b programme.	•	U	

UNITS	COURSE DETAILS
UNIT-I	vectors, scalars –examples for scalars and vectors from physical quantities – addition, subtraction of vectors – resolution and resultant of vectors – units and dimensions– standard physics constants
UNIT-II	different types of forces–gravitational, electrostatic, magnetic, electromagnetic, nuclear –mechanical forces like, centripetal, centrifugal, friction, tension, cohesive, adhesive forces
UNIT-III	different forms of energy– conservation lawsof momentum, energy – typesof collisions –angular momentum– alternate energy sources–real life examples
UNIT-IV	types of motion– linear, projectile, circular, angular, simple harmonic motions – satellite motion – banking of a curved roads – stream line and turbulent motions – wave motion – comparison of light and sound waves – free, forced, damped oscillations
UNIT-V	surface tension – shape of liquid drop – angle of contact – viscosity – lubricants – capillary flow – diffusion – real life examples – properties and types of materials in daily use- conductors, insulators – thermal and electric
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 D.S. Mathur, 2010, Elements of Properties of Matter, S.Chandand Co BrijLaland N. Subrahmanyam, 2003, Properties of Matter, S.Chandand Co.
REFERENCEB OOKS	1. H.R. Gulati, 1977, Fundamental of General Properties of Matter, Fifth edition, S.Chandand Co.
WEB RESOURCES	 <u>http://hyperphysics.phy-astr.gsu.edu/hbase/permot2.htmlhttps://science.nasa.gov/ems/</u> <u>https://eesc.columbia.edu/courses/ees/climate/lectures/radiation_hays/</u>

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy / Cognitive Domain		
	CO1 Apply concept of vectors to understand concepts of Physics and solve problems				
COURSE	CO2	Appreciate different forces present in Nature while learning about phenomena related to these different forces.	K2		
OUTCOMES	CO3	Quantify energy in different process and relate momentum, velocity and energy	К3		
	CO4	Differentiate different types of motions they would encounter in various courses and understand their basis	K2 & K3		

COS		arious properties of matter nect them with different		K3
K1 - Reme	mbering	K2-Understanding	K3- Applyir	ıg

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	S	S	S	М	S	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	S	М
CO5	S	М	S	S	S	S	S	М	2	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	3	3	2	3
CO4	3	3	3	2	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	13	15
Weighted percentage of course contribution to POS	3.0	3.0	2.8	2.6	3.0

SECOND SEMESTER – CORE THEORY 2 - HEAT, THERMODYNAMICS and STATISTICAL PHYSICS

COURSE	SECOND SEI	SECOND SEMESTER – CORE PAPER III (THEORY)					
COURSETITLE	HEAT, THEF	HEAT, THERMODYNAMICS and STATISTICAL PHYSICS					
CREDITS - 5		Hours 5	CIA 25	CE 75			
COURSE OBJECTIVES	in Celsius, K explanation of the laws of the	elvin and Fahrer transmission of h	heit scales. Practi eat in good and ba tropy in everyday	sion of temperature cal exhibition and d conductor. Relate life and explore the			

UNITS	COURSEDETAILS				
UNIT-I	CALORIMETRY: specific heat capacity – specific heat capacity of gases C_P and C_V – Meyer's relation – Joly's method for determination of C_V – Regnault's method for determination of C_P LOW TEMPERATURE PHYSICS: Joule-Kelvin effect – porous plug experiment – Joule-Thomson effect –Boyle temperature – temperature of inversion – liquefaction of gas by Linde's Process – adiabatic demagnetisation.				

	THERMODYNAMICS-I: zeroth law and first law of thermodynamics
UNIT-II	– P-V diagram – heat engine –efficiency of heat engine – Carnot's
	engine, construction, working and efficiency of petrol engine and diesel
	engines – comparison of engines.
	THERMODYNAMICS-II: second law of thermodynamics -entropy of
	an ideal gas – entropy change in reversible and irreversible processes –
UNIT-III	T-S diagram – thermodynamical scale of temperature – Maxwell's
	thermodynamical relations -Clasius-Clapeyron's equation (first latent
	heat equation) - third law of thermodynamics - unattainability of
	absolute zero – heat death.
	HEATTRANSFER: modes of heat transfer: conduction, convection and
	radiation.
	Conduction: thermal conductivity – determination of thermal
	conductivity of a good conductor by Forbe's method – determination of
UNIT-IV	thermal conductivity of a bad conductor by Lee's disc method.
	<i>Radiation</i> : black body radiation (Ferry's method) – distribution of energy
	in black body radiation – Wien's law and Rayleigh Jean's law –Planck's
	law of radiation – Stefan's law – deduction of Newton's law of cooling
	from Stefan's law.
	STATISTICALMECHANICS: definition of phase-space – micro and
	macro states - ensembles - different types of ensembles - classical and
UNIT-V	quantum Statistics - Maxwell-Boltzmann statistics - expression for
	distribution function – Bose-Einstein statistics – expression for
	distribution function – Fermi-Dirac statistics –expression for distribution
	function – comparison of three statistics.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures -seminars -
	webinars – industry inputs – social accountability – patriotism
	1. BrijlalandN. Subramaniam, 2000, Heat and Thermodynamics, S.
	2. , 1969, Heat, Triveni Publishers, Chandand Co.
	3. NarayanamoorthyandKrishnaRaoChennai.
	4. V.R.KhannaandR.S.Bedi, 1998 1 st Edition, Text book of Sound,
TEXT BOOKS	Kedharnaath Publish and Co, Meerut
	5. Brijlal and N. Subramanyam, 2001, Waves and Oscillations, Vikas
	Publishing House, New Delhi.
	6. Ghosh, 1996, Text Book of Sound, S.ChandandCo.
	7. R.MurugeshanandKiruthigaSivaprasath, Thermal Physics,
	S.Chandand Co. 1. J.B.RajamandC.L.Arora, 1976, Heat and Thermodynamics, 8 th
	1. J.B.RajamandC.L.Arora, 1976, Heat and Thermodynamics, 8 th edition, S.Chandand Co. Ltd.
	2. D.S.Mathur, Heat and Thermodynamics, Sultan Chand and Sons.
REFERENCE	3. Gupta, Kumar, Sharma, 2013, Statistical Mechanics, 26th Edition, S. Chand and Co.
BOOKS	4. Resnick, HallidayandWalker,2010, Fundamentals of Physics, 6th
	Edition.
	5. Sears, Zemansky, Hugh D. Young,Roger A. Freedman, 2021
	University Physics with Modern Physics 15th Edition, Pearson.
	1. https://youtu.be/M_5KYncYNyc
	2. <u>https://www.youtube.com/watch?v=4M72kQulGKkandvl=en</u>
WEB	3. Lecture 1: Thermodynamics Part 1 Video Lectures Statistical
RESOURCES	Mechanics I: Statistical Mechanics of Particles Physics MIT
ALGOURCES	OpenCourseWare
	4. http://www.freebookcentre.net/Physics/Physics-Books-Online.html
COURSE OUTCON	

At the end of the course, the student will be able to:

	CO	Statements	Bloom's Taxonomy
COURSE OUTCOMES	CO1	Acquires knowledge on how to distinguish between temperature and heat. Introduce him/her to the field of thermometry and explain practical measurements of high temperature as well as low temperature Physics. Student identifies the relationship between heat capacity, specific heat capacity and the study of Low temperature Physics.	
	CO2	Derive the efficiency of Carnot's engine. Discuss the implications of the laws of Thermodynamics in diesel and petrol engines	
	CO3	Able to analyze performance of thermodynamic systems viz efficiency by problems. Gets an insight into thermodynamic properties like enthalpy, entropy	
	CO4	Study the process of thermal conductivity and apply it to good and bad conductors. Quantify different parameters related to heat, relate them with various physical parameters and analyse them	
	CO5	Interpret classical statistics concepts such as phase space, ensemble, Maxwell-Boltzmann distribution law. Develop the statistical interpretation of Bose-Einstein and Fermi-Dirac . Apply to quantum particles such as photon and electron	

MAPPING WITH PROGRAM OUT COMES: Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S),MEDIUM(M) and LOW(L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	Μ

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	14	15	15
Weighted percentage of course contribution to	3.0	2.8	2.8	3.0	3.0
POS					

COURSE	SECC	SECOND SEMESTER – CORE PAPER IV (PRACTICAL 2)							
COURSE TITLE	PRAC	PRACTICAL II							
CREDITS - 4		Hours 4 CIA 25 CE 75							
COURSE	Apply	Apply their knowledge gained about the concept of heat and sound							

OBJECTIVES	waves,	resonance,	calculate	frequency	of	ac	mains	set	up
	experimen	tation to ve	rify theorie	es, quantify	and	ana	lyse, ab	le to	do
	error analy	sis and corr	elate result	S					

HEAT, OSCILLATIONS, WAVES and SOUND

Minimum of Eight Experiments from the list:

- 1. Determination of specific heat by cooling graphical method.
- 2. Determination of thermal conductivity of good conductor by Searle's method.
- 3. Determination of thermal conductivity of bad conductor by Lee's disc method.
- 4. Determination of thermal conductivity of bad conductor by Charlaton's method.
- 5. Determination of specific heat capacity of solid.
- 6. Determination of specific heat of liquid by Joule's electrical heating method (applying radiation correction by Barton's correction/graphical method),
- 7. Determination of Latent heat of a vaporization of a liquid.
- 8. Determination of Stefan's constant for Black body radiation.
- 9. Verification of Stefan's-Boltzmans law.
- 10. Determination of thermal conductivity of rubber tube.
- 11. Helmholtz resonator.
- 12. Determination of Young's modulus by non uniform bending Microscope load depression graph.
- 13. Determination of Young's modulus by -uniform bending scale and telescope
- 14. Velocity of sound through a wire using Sonometer.
- 15. Determination of velocity of sound using Kunds tube.
- 16. Determination of frequency of an electrically maintained tuning fork
- 17. To verify the laws of transverse vibration using sonometer.
- 18. To verify the laws of transverse vibration using Melde's apparatus.
- 19. To compare the mass per unit length of two strings using Melde's apparatus.
- 20. Frequency of AC by using sonometer.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

со	CO Statements						
	CO1 Understand the concepts of specific heat, thermal conductivity of good conductor.						
	CO2	Use standard methods to calibrate the given measuring instruments	K2				
COURSE OUTCOMES		Determine the thermal conductivity of bad conductor by Lee's disc method.	К3				
	CO4	Learning a experience in theory of stretched string, frequency of an electrically maintained tuning fork.	К3				
	CO5	Able to determine the Frequency of AC by using sonometer.	K2				

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	М	М	S	S	Μ	S
CO2	S	М	S	S	М	S	М	М	М	М

CO3	S	М	S	S	М	М	S	S	М	S
CO4	М	Μ	М	М	S	S	М	S	S	М
CO5	S	Μ	S	S	S	S	S	S	М	S

CO / PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	2	3	3	3
CO4	3	3	2	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	13	15	15
Weighted percentage of	3.0	2.8	2.6	3.0	3.0
course contribution to POS					

COURSE	ALLIED PAPER							
COURSE TITLE	ALLIED PHYSIC	S –	II					
CREDITS - 2	Hours	3	CIA 25	CE 75				
COURSE OBJECTIVES			c concepts of optics, mo antum physics, semico					
UNITS			COURSE DETAILS					
UNIT-I	 air wedge – deter diffraction – diffra experimental determ theory) – polarization 	min actio nina on -	 interference in thin fill ation of diameter of a the on of light vs sound tion of wavelength using polarization by double application in sugar indu 	nin wire by air wedge – – normal incidence – g diffraction grating (no reflection – Brewster's				
UNIT-II	number – atomic n quantum numbers configuration – peri Stark effect –Zeem	ATOMIC PHYSICS: atom models – Bohr atom model – mass number – atomic number – nucleons – vector atom model – various quantum numbers – Pauli's exclusion principle – electronic configuration – periodic classification of elements – Bohr magneton – Stark effect –Zeeman effect (elementary ideas only) – photo electric effect – Einstein's photoelectric equation – applications of photoelectric						
UNIT-III	NUCLEAR PHYS numbers – shell mod – radioactivity – use controlled and unco released in fission – atom bomb – nuc commissioning PFF reactors: seismic ar	ICS del ontr – c clear BR nd f	inuclear models – liqu – nuclear energy – mass half life – mean life - ra olled chain reaction – n hain reaction – critical r reactor – breeder rea in our country – heavy w floods –introduction to I r reactions – differences	id drop model – magic defect – binding energy idio isotopes and uses – uclear fission – energy reaction – critical size- actor – importance of vater disposal, safety of DAE, IAEA – nuclear				

	ΙΝΤΡΟΝΙΟΤΙΟΝ ΤΟ ΒΕΙ ΑΤΙΨΙΤΥ ΑΝΝ ΟΡΑΨΙΤΑΤΙΟΝΙΑΙ
UNIT-IV	INTRODUCTION TO RELATIVITY AND GRAVITATIONAL WAVES : frame of reference – postulates of special theory of relativity – Galilean transformation equations – Lorentz transformation equations – derivation – length contraction – time dilation – twin paradox – mass- energy equivalence –introduction on gravitational waves, LIGO, ICTS opportunities at International Centre for Theoretical Sciences
UNIT-V	SEMICONDUCTOR PHYSICS: p-n junction diode – forward and reverse biasing – characteristic of diode – zener diode – characteristic of zener diode – voltage regulator – full wave bridge rectifier – construction and working – advantages (no mathematical treatment) – USB cell phone charger –introduction to e-vehicles and EV charging stations
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R.Murugesan (2005), AlliedPhysics,S.ChandandCo,NewDelhi. K.ThangarajandD.Jayaraman(2004), AlliedPhysics,PopularBookDepot,Chennai. BrijlalandN.Subramanyam(2002), TextbookofOptics,S.ChandandCo,NewDelhi. R.Murugesan (2005), ModernPhysics,S.ChandandCo,NewDelhi. A.SubramaniyamAppliedElectronics, 2ndEdn.,NationalPublishingCo.,Chennai.
REFERENCE BOOKS	 ResnickHallidayandWalker (2018), FundamentalsofPhysics, 11thEdn.,JohnWilleyandSons, Asia Pvt.Ltd.,Singapore. D.R.KhannaandH.R.Gulati (1979).Optics, S.ChandandCo.Ltd.,New Delhi. A.Beiser (1997), ConceptsofModernPhysics,TataMc- GrawHillPublication,NewDelhi. Thomas L. Floyd (2017), Digital Fundamentals, 11thEdn., Universal Book Stall, NewDelhi. V.K.Metha(2004), Principlesofelectronics, 6thEdn. ,S.ChandandCompany, New Delhi.
WEB RESOURCES	 https://www.berkshire.com/learning-center/delta-p- facemask/https://www.youtube.com/watch?v=QrhxU47gtj4http s://www.youtube.com/watch?time_continue=318andv=D38BjgU dL5Uandfeature=emb_logo https://www.youtube.com/watch?v=JrRrp5F-Qu4 https://www.validyne.com/blog/leak-test-using-pressure- transducers/ https://www.atoptics.co.uk/atoptics/blsky.htm - https://www.metoffice.gov.uk/weather/learn-about/weather/optical- effects

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
COURSE OUTCOMES	CO1	Understand the concepts of interference diffraction using principles of superposition of waves and rephrase the concept of polarization based on wave patterns	K2

	CO2	Outline the basics of different atom models and various experiments establishing quantum concepts. Appreciate the solar energy related applications.	K2
	CO3	Summarize the properties of nuclei, nuclear forces structure of atomic nucleus and nuclear models. Interpret nuclear processes like fission and fusion. Understand the importance of nuclear energy, safety measures carried out.	К3
	CO4	Acquire the basic concept of relativity as equivalence principle, inertial frames and Lorentz transformation Relate this with current research in this field and get an overview of research projects	K2&K3
(C O5	Summarize the working of semiconductor devices like junction diode, Zener diode, transistors and practical devices we daily use like USB chargers and EV charging stations.	К3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) in the 3-point Scale of STRONG (**S**), MEDIUM (**M**) and LOW(**L**).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	М	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	2	2	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	15	15
Weighted percentage of	3.0	3.0	2.8	2.8	3.0
course contribution to POS					

COURSE	EVEN SEMESTER -	CORE					
COURSE TITLE	ALLIED PRACTICAL- II						
CREDITS - 2	Hours 2	CIA 25	CE 75				
COURSE OBJECTIVES	Apply various Physics concepts to understand concepts of Light, electricity and magnetism and waves, set up experimentation to verify theories, quantify and analyse, able to do error analysis and correlate results						
Minimum of Eigh	t Experiments from the	list:					
1. Radius of cur	vature of lens by formin	g Newton's rings					
2. Thickness of	a wire using air wedge						
3. Wavelength	of mercury lines using spectrometer and grating						
4. Refractive in	dex of material of the lens by minimum deviation						
5. Refractive in	dex of liquid using liquid	l prism					
	n of AC fragman ary using	*					

6. Determination of AC frequency using sonometer

- 7. Specific resistance of a wire using PO box
- 8. Thermal conductivity of poor conductor using Lee's disc
- 9. Determination of figure of merit table galvanometer
- 10. Determination of Earth's magnetic field using field along the axis of a coil
- 11. Characterisation of Zener diode
- 12. Construction of Zerner / IC regulated power supply
- 13. Construction of AND, OR, NOT gates using diodes and transistor
- 14. NOR gate as a universal building block

At the end of the course, the student will be able to:

COs	Statements	Bloom's Taxonomy level
CO1	Gain knowledge in the scientific methods and learn the process of measuring different Physical variables	K2
CO2	Have a deep knowledge of fundamentals of optics electric circuits and electronics	K2
CO3	Know the application side of the experiments by using spectrometers, Microscopes	К3
CO4	Use standard methods to calibrate the ammeter and to measure resistance of the given coil and various physical quantities	K3
CO5	Apply the theory to design the basic electronic circuits	К3

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	S	S	М	S	S	S
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	М
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	14	15

Weighted percentage	3	3	3	2.8	3
of course contribution					
to Pos					

NON MAJOR ELECTIVES (NME)

NME II

	PHYSICS FOR	EVERYDAY LIFE							
Credits 2	Hours 2	CIA 25	CE 75						
Learning Objective: To know where all physics principles have been put to use in daily									
life and appreciate the concepts with a better understanding also to know about Indian									
scientists who hav	e made significant contrib	utions to Physics							
UNITS		COURSE DETAILS							
UNIT-I	MECHANICAL OBJE	CTS: spring scales -	bouncing balls -roller						
UNIT-I	coasters - bicycles -rock	ets and space travel.							
	OPTICAL INSTRUME	NTS AND LASER:vis	ion corrective lenses -						
UNIT-II	polaroid glasses - UV pro	otective glass – polaroid	l camera – colour						
	photography - holograph	y and laser.							
	PHYSICS OF HOME A	PPLIANCES: bulb - t	fan – hair drier –						
UNIT-III	television - air conditione	ers - microwave ovens -	 vacuum cleaners 						
	SOLAR ENERGY: Sol	ar constant – General a	pplications of solar						
UNIT-IV	energy - Solar water heat	ers – Solar Photo – volt	aic cells – General						
	applications of solar cells	•							
	INDIAN PHYSICIST A	AND THEIR CONTR	IBUTIONS:						
UNIT-V	C.V.Raman, HomiJehang	girBhabha, Vikram Sar	abhai, Subrahmanyan						
0111-1	Chandrasekhar, Venkatra								
	and their contribution to s								
	1. The Physics in our Da		ra,						
TEXT BOOKS	GugucoolPublishing, I	-							
	2. For the love of physic	s, Walter Lawin, Free P	ress, New York, 2011.						

COURSE OUTCOMES:

At the end of the course, the student will be able to:

СО	Statement	Blooms Taxonomy level
CO1	Know where all Physics principles have been put to use in daily life	K2
CO2	Use optical instruments and LASER in everyday life.	K3
CO3	Apply the basic Physics principles for home appliances	К3
CO4	Gain the knowledge on usage of solar energy.	К2
CO5	Know about Indian Physicist and their contributions.	К3

K1 - Remembering K2-Understanding K3-Applying

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	М	S
CO3	S	S	S	S	S	М	S	S	S	М

COURSE	SECOND SEMESTER – Skill Enhancement course III								
COURSE TITLE		SEC 3-NANO SCIENCE AND NANO TECHNOLOGY							
CREDITS - 2		HOURS - 2 CIA 25 CE 75							
COURSE	То	provide foundational	knowledge of Nanom	aterials. To make the					
OBJECTIVES	stu	dents acquire an under	rstanding the basics of	Carbon nanotubes					
	and	and its synthesis techniques. To know the significance of Molecular							
	Na	notechnology. To con	prehend the principle	s and applications of					

CO4	М	S	S	S	S	S	S	М	S	S
CO5	S	S	S	М	S	S	S	S	S	S

	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	2	3	3	3	3
CO5	3	3	3	2	3
Weightage	14	15	15	14	15
Weighted percentage of course contribution to Pos	2.8	3	3	2.8	3

Nanosensors	and	Nanorobotics.	То	help	them	understand	the
applications of	of nanot	technology					

UNITS & COURSE DETAILS

UNIT I -NANOMATERIALS

Introduction to Nanoscience Nanotechnology- nanomaterials – different forms of nanaomaterials – synthesis of nanomaterials- top-down and bottom-up approach- Properties of nanophase particles: Physical, Magnetic, Mechanical and Optical properties.

UNIT II – SYNTHESIS OF NANOMATERIALS

Techniques for synthesis of nanomaterials: Ball milling, Plasma arcing, chemical vapour deposition, Sol gel and Electrode position.

UNIT III - CARBON NANOTUBES (CNT)

Carbon – carbon nanotubes (CNT) – types of CNT- fabrication of carbon nanotubes – electric arc discharge method – pulsed laser deposition – chemical vapour deposition.

UNIT IV – PROPERTIES & APPLICATIONS OF CNT

Properties of CNT: Electrical, Mechanical, Physical, Chemical and Thermal properties-Applications of CNT: Electrical and Electronics, Computer, Chemical, Mechanical and Battery technology

UNIT V – APPLICATIONS OF NANOTECHNOLOGY

Nanomedicine: Drug delivery, Therapy Techniques, Anti-Microbial Techniques-Nanoelectronics-Nanotechnology and Spaceflight-fuel cells and Nanotechnology-Solar cells and Nanotechnology-Nano Battery.

BOOKS FOR STUDY

- Origin and Development of NanaoTechnology by P.K.Sharma
- Engineering Physics-II by Dr.P.Mani
- Nanotechnology by Manoj Bhatia

BOOKS FOR REFERENCE

- Basics of Nano Physics G.P.Singh
- Nanotechnology and Micromachines Dr.N.L. Kaushik

COURSE OUTCOMES:

At the end of the course, the student will be able to:

СО	Statement	Blooms Taxonomy level
CO1	Gain an overall understanding of Nano science and Nanotechnology	К3
CO2	Understand the different types of nano materials, their properties,	K2
CO3	Acquire adequate knowledge on fabrication methods and	К2
CO4	Analyze the various characterization techniques.	К3

CO5	Know the applications of nanomaterials in recent medical field.	К3
-----	---	----

K1 - Remembering K2-Understanding K3-Applying

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	S	S	Μ	S	S
CO2	М	S	М	S	М	S	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	S	М	М	S	S	М	S	М	М	М
CO5	М	S	S	S	М	S	S	М	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of course contributin to POS	3	3	3	3	3

THIRD SEMESTER – CORE - MECHANICS

COURSE	THIRD SEMESTER – CORE PAPER V (Theory)					
COURSE TITLE	MECHANICS					
CREDITS - 4	Hours 4	CIA 25	CE 75			
COURSE	This course allows the students: To have a basic understanding of the					
OBJECTIVES	laws and principles of mechanics; To apply the concepts of forces					
	existing in the system; To understand the forces of physics in everyday					
	life; To visualize conservation laws; To apply Lagrangian equation to					
	solve complex problem	ms.	· · · ·			

UNITS	COURSEDETAILS
UNIT-I	LAWS OF MOTION: Newton's Laws – forces – equations of motion – frictional force – motion of aparticlein a uniform gravitational field – types of everyday forces in Physics. <i>Gravitation</i> : Classical theory of gravitation–Kepler's laws, Newton's law of gravitation – Determination of G by Boy's method – Earth-moon system – weightlessness – earth satellites – parking orbit – earth density – mass of the Sun – gravitational potential – velocity of escape –

	satellite potential and kinetic energy –Einstein's theory of gravitation –
	introduction – principle of equivalence – experimental tests of general
	theory of relativity – gravitational red shift – bending of light –
	perihelion of mercury.
	CONSERVATION LAWS OF LINEAR AND ANGULAR
	MOMENTUM: conservation of linear and angular momentum –
	Internal forces and momentum conservation – center of mass –
UNIT-II	examples – general elastic collision of particles of different masses –
	system with variable mass – examples – conservation of angular
	momentum – torque due to internal forces – torque due to gravity –
	angular momentum about center of mass – proton scattering by heavy
	nucleus.
	CONSERVATION LAWS OF ENERGY: Introduction – significance
	of conservation laws – law of conservation of energy concepts of work-
UNIT-III	power – energy – conservative forces – potential energy and
	conservation of energy in gravitational and electric field – examples –
	non-conservative forces – general law of conservation of energy.
	RIGID BODY DYNAMICS: t ranslational and rotational motion –
	angular momentum – moment of inertia – general theorems of moment
UNIT-IV	of inertia – examples – rotation about fixed axis – kinetic energy of
	rotation – examples – body rolling along a plane surface – body rolling
	down an inclined plane – gyroscopic precision – gyrostatic applications.
UNIT-V	LAGRANGIAN MECHANICS: generalized coordinates –degrees of freedom – constraints - principle of virtual work and D' Alembert's
	Principle – Lagrange's equation from D' Alembert's principle –
	application –simple pendulum – Atwood's machine. PROFESSIONAL COMPONENTS: expert lectures –seminars –
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. J.C.Upadhyaya, 2019, Classical Mechanics, Himalaya Publishing
	house, Mumbai.
	2. P.DuraiPandian, LaxmiDuraiPandian,
	MuthamizhJayapragasam,2005, Mechanics, 6 th revised edition,
	S.Chandand Co.
TEXT BOOKS	3. D.S.Mathur and P.S.Hemne, 2000, Mechanics, Revised Edition,
	S.Chandand Co.
	4. Narayanamurthi, M.andNagarathnam. N, 1998, Dynamics. The
	National Publishing, Chennai.
	5. Narayanamurthi, M. and Nagarathnam, N, 1982, Statics,
	Hydrostatics and Hydrodynamics, The National Publishers, Chennai.1. Goldstein Herbert, 1980, Classical Mechanics. U.S.A: Addison and
	Wesely.
REFERENCE	2. Halliday, David and Robert, Resnick, 1995, Physics Vol.I. New
BOOKS	Age, International, Chennai.
BOOKS	3. Halliday, David Robert Resnick and Walker Jearl, 2001,
	Fundamentals of Physics, John Wiley, New Delhi
<u> </u>	1. https://youtu.be/X4_K-XLUIB4
	2. <u>https://nptel.ac.in/courses/115103115</u>
	3. https://www.youtube.com/watch?v=p075LPq3Eas
WEB	4. https://www.youtube.com/watch?v=mH_pS6fruyg
RESOURCES	5. https://onlinecourses.nptel.ac.in/noc22_me96/preview
	6. https://www.youtube.com/watch?v=tdkFc88Fw-M
	7. https://onlinecourses.nptel.ac.in/noc21_me70/preview
	. <u>mps//onlinecoulocs/iptonuc.in/noc21_inc/o/pic/ic//</u>

At the end of the course, the student will be able to:

		Statements	Bloom's					
CO			Taxonomy					
	CO1 Understand the Newton's Law of motion, understand							
		general theory of relativity, Kepler's laws and Realize the						
		basic principles behind planetary motion						
	CO2	Acquire the knowledge on the conservation laws	K2					
COURSE	CO3	Apply conservation law and calculate energy of various	K2 & K3					
OUTCOMES		systems, understand and differentiate conservative and						
		non-conservative forces						
	CO4	Gain knowledge on rigid body dynamics and solve	K3					
		problems based on this concept						
	CO5	Appreciate Lagrangian system of mechanics, apply D'	K3					
		Alemberts principle						

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW(L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	М	S	S	S	Μ	S	S
CO2	S	S	S	М	S	М	S	S	S	М
CO3	S	S	S	S	S	S	М	S	М	S
CO4	Μ	S	S	S	М	S	S	М	S	S
CO5	S	S	М	S	S	М	S	S	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	15	15	15
Weighted percentage of course contribution to POS	3.0	2.8	3.0	3.0	3.0

THIRD SEMESTER – CORE PRACTICAL -3

COURSE	THIR	THIRD SEMESTER – CORE PAPER VI (PRACTICAL 3)								
COURSE TITLE	PRAC	PRACTICAL III								
CREDITS - 4		Hours 4	CIA 25	CE 75						
COURSE	Const	ruct circuits to learn a	bout the concept	of electricity, current,						
OBJECTIVES	resista	resistance in the path of current, different parameters that affect a								
-				and assimilate the concept						

ELECTRICITY	ľ
-------------	---

Minimum of Eight Experiments from the list:

- 1. Calibration of low range and high range voltmeter using potentiometer
- 2. Calibration of ammeter using potentiometer.
- 3. Measurement of low resistances using potentiometer.
- 4. Determination of field along the axis of a current carrying circular coil.
- 5. Determination of earth's magnetic field using field along axis of current carrying coil.
- 6. Determination of specific resistance of the material of the wire using PO box.
- 7. Determination of resistance and specific resistance using Carey Foster's bridge.
- 8. Determination of internal resistance of a cell using potentiometer.
- 9. Determination of specific conductance of an electrolyte.
- 10. Determination of e.m.f of thermo couple using potentiometer
- 11. Determination of capacitance using Desauty's bridge and B.G./Spot galvanometer/head phone.
- 12. Determination of figure of merit of BG or spot galvanometer.
- 13. Comparison of EMF of two cells using BG.
- 14. Comparison of capacitance using BG.

Course Outcomes:

On completion of the Course the student will be able to,

со	Statement	Blooms Taxonomy level
CO1	Use the standard methods to calibrate the given measuring instruments	К3
CO2	Gain knowledge in scientific methods and learn the process of measuring different physical variables	К3
CO3	Understand the usage of basic laws and theories to determine the various properties of materials	K2
CO4	Apply the theory to design basic electric circuits	K1& k3
CO5	Understand the application side of experiments	К3

K1 - Remembering K2-Understanding K3-Applying

Mapping of Course Outcome with POs:

CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	S
CO3	S	S	S	М	М	Μ	S	S	М	S
CO4	S	S	М	S	S	S	Μ	S	S	S
CO5	S	S	S	Μ	S	S	S	Μ	Μ	М
	S- Strong		M-N	/ledium	L-	Low				

M-Medium

K1 - Remembering K2-Understanding

K3-Applying

Mapping of Course Outcome with PSOs:

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	2	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	14	15
Weighted percentage of course contribution to POS	3	2.8	3	2.8	3

COURSE	THIR	THIRD SEMESTER – SKILL ENHANCEMENT COURSE VI									
COURSE TITLE	SEC 4	SEC 4- FUNDAMENTALS OF COMPUTER AND MS OFFICE									
	(Eı	(Entrepreneurial Based)									
CREDITS - 2		Hours	2	CIA 2	25	CE 75					
COURSE	To gi	ve an in-de	epth under	standing	g of why con	nputers are essential					
OBJECTIVES	compo	onents in b	usiness, ed	ucation	and society.	To provide hands-on					
	use of	use of Microsoft Office Word, Create a document in Microsoft Word									
		with formatting. To teach the fundamentals of power point presentation									
		0			I I I	r · · · · · · · ·					

UNITS AND COURSE DETAILS

UNIT – I: **COMPUTER FUNDAMENTALS**

Introduction - History of computers - Characteristics of computers - Need for a computer -Computer applications – Concept of computer – Structure of computer (Block Diagram & components) - Classification of computers - Types of computer.

INPUT & OUTPUT DEVICES UNIT –II:

Input devices – Keyboard – Mouse – Trackball – Joystick – Electronic pen – Touch screen - data scanning devices - image scanner - optical character recognition (OCR) - Optical mark reader - Bar code Reader - Magnetic ink character recognition (MICR) - Output devices - Monitor - Printer Impact of non - impact printers - Main memory - RAM, ROM - Secondary storage devices. Magnetic tapes and disks - optical disks.

UNIT – III: MS WORD

Windows Layout – Menus – File : opening, typing and editing a file – Edit – copying, moving and inserting -formatting fundamentals: characters and fonts - formatting paragraphs - Views in MS-Word - Insert tools - Tables - Windows - Saving & exiting - Spell check - Table creation - Inserting pictures- applying WordArt - Mail merge.

UNIT – IV: MS EXCEL

Building a Worksheet – Selecting Worksheet items – Using Auto fill – Adding rows and columns – Copying and Moving information – Creating and Copying formulas –Naming ranges– Using functions – Improving the appearance of worksheet – Changing column Width – Formatting Text and Numbers – Using auto format – Spell Checking – Using Chart Wizard – Creating, Enhancing and Printing a chart.

UNIT - V: MS POWER POINT

About power point: Starting power point-creating a presentation using auto content wizardcreating a design template- creating a blank presentation-opening an existing presentation- saving and closing a presentation- view, insert & edit in presentations-formatting in presentations.

BOOKS FOR STUDY:

- 1. MS Office 2000 for every one Sanjay Saxena
- 2. MS Office-C.NellaiKannan

BOOKS FOR REFERENCE:

1. Computer Fundamentals- Anita Goel

- 2. Computer Basics- SeemaSirpal
- 3. Microsoft Office Excel-TorbenLageFrandsen. Semester III

COURSE OUTCOMES: At the end of the course, the student will be able to:

СО	Statements	Bloom's			
CO		Taxonomy level			
CO1	Describe the usage of computers and why computers are	K1			
COI	essential components in business and society.	K1			
CO2	Work with the basic features of Word, create high quality	К3			
02	document designs and layouts.	K3			
CO3	Modify worksheet data and structure and format data in a	K1			
005	Worksheet	K1			
CO4	Sort data, manipulate data using formulas and functions	К3			
04	and add and modify charts in a worksheet	NЭ			
CO5	Prepare power point presentation for a seminar	К3			
-	K1 - Remembering K2-Understanding K3-An	nlving			

K1 - Remembering K2-Understanding K3-Applying

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	М	М	S	S	М	S
CO2	М	М	S	S	S	S	S	М	М	М
CO3	S	М	S	S	М	М	S	S	S	S
CO4	М	М	М	М	S	S	М	S	S	М
CO5	S	М	S	S	S	S	S	S	М	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3

CO4	3	3	2	3	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	15	15
Weighted percentage	3.0	3.0	2.8	3.0	3.0
of course contribution					
to POS					

COURSE	THIR	THIRD SEMESTER – SKILL ENHANCEMENT COURSE V						
COURSE TITLE		SEC-5 ASTRONOMY						
CREDITS - 2		Hours	-	2	CIA 25	CE 75		
		ike the st , stars and			w about fundan	nentals of telescopes, solar		

UNITS AND COURSE DETAILS

UNIT – I: INTRODUCTION TO ASTRONOMY

Birth of Modern Astronomy – Celestial Sphere – Celestial Coordinates – Geocentric theory – Heliocentric theory – Planets: Terrestrial and Jovian Planets – Asteroids – Comets – Meteors. **UNIT – II: ASTRONOMICAL INSTRUMENTS**

The orientation of Earth in Space – Arc and Time Units – Local Time – Standard time – Kinds of Optical Telescopes: Refracting Telescope and Reflecting Telescope – Radio Telescope.

UNIT – III: SOLAR PHYSICS

Introduction – Physical Properties of the Sun – Structure of the Sun – Sun spots – Solar Wind – Auroras – Solar Flares – Space weather effects.

UNIT – IV: STELLAR PHYSICS

Classification of stars – Hertzsprung – Russell diagram – Luminasity of a star – Stellar evolution; Birth of a star, maturity, ageing stars, death of a star – White dwarfs – Neutron stars – Black holes.

UNIT – V: GALAXIES

Galaxy Nomenclature – Types of Galaxies: Elliptical, Spiral, Barred Spiral and Irregular galaxies – Milky Way Galaxy – Star Clusters – Galactic Clusters – Pulsars – Supernova explosion.

BOOKS FOR STUDY

- Introduction to Astrophysics Dr. A. MUJIBER RAHMAN Theni Edition 2018.
- Astronomy S. KUMARAVELU & SUSHEELA KUMARAVELU, MurugaBhavonam, Chidambaranagar, Nagercoil.

BOOKS FOR REFERENCE

- Discovering Astronomy R.D. CHOPMAN, W.H. FREEMAN CO., 1989.
- The Frontier Between Physics and Astronomy J.V. NARLIKER, IIT, Madras series 1989.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

СО	Statements	Bloom's Taxonomy level
CO1	Understand the basics of celestial bodies	K2

	Apply the knowledge to find how diffraction limits the resolution of any system having a lens or mirror. Distinguish between reflecting and refracting telescopes and their usage.	K3
CO3	Understand the basics of eclipse and its types	К2
CO4	Have a deep knowledge of fundamentals of stellar evolution	K1
	Remember and illustrate the structure of our Milky way galaxy and types of galaxies.	К3

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes **(CO)** for each course with program outcomes **(PO)** and program specific outcomes **(PSO)** in the 3-point scale of STRONG (3), MEDIUM (2) andLOW (1).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	М	S	М	S	М	S	S	S	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	2
CO4	3	3	3	3	3
C05	3	3	3	3	2
Weightage	15	15	15	15	13
Weighted percentage of course contribution to Pos	3	3	3	3	2.6

COURSE	THIRD SEMESTER – Part - IV					
COURSE TITLE ENVIRONMENTAL SCIENCE						
CREDITS - NILHours - 1CIA 25CE 75						
COURSE OBJECTIVES	Environmental Activity means any investigation, study, assessment, evaluation, sampling, testing, monitoring, containment, removal, disposal, closure, corrective action, remediation (regardless of whether active or passive), natural attenuation, restoration, bioremediation, response, repair, corrective measure, cleanup or abatement that is required or necessary under any applicable					

The students are to be engaged in Environmental activities such as:

- Start a Garden Club
- o Plant .. Anything
- Go on a Nature Scavenger Hunt
- o Recycle Waste Materials
- o Start a Green Team
- Do Mini Greenhouse Craft
- Create Worm Farm
- o Take Plastic Pledge
- Access the Wisdom of Local Community
- Hold an Energy-free (or Energy-Light) Day etc.

Evaluation:

The participation and performance of the students in Environmental activities will be assessed and best performers will be rewarded.

FOURTH SEMESTER – CORE THEORY 4 - OPTICS and LASER PHYSICS

COURSE	FOURTH SEMESTER – CORE PAPER VII (THEORY)					
COURSE TITLE	OPTICS and LASER PHYSICS					
CREDITS - 5	Hours 5	CIA 25	CE 75			
COURSE OBJECTIVES	phenomena in geom behaviour of light differences in the diffraction and Polariz life; To understand th	pth understanding of netrical and wave op in different mediums important phenomena zation and apply the kn ne design of optical sy o understand the worki	tics; To explain the ; To understand the namely interference, owledge in day to day stems and methods to			

UNITS	COURSE DETAILS
UNIT-I	LENS AND PRISMS: Fermat's principle of least time – postulates of geometrical optics – thick and thin lenses – focal length, critical thickness, power and cardinal points of a thick lens – narrow angled prisms. <i>Lens</i> : aberrations: spherical aberration, chromaticaberrations, coma, and astigmatism– curvature of the field – distortion – chromatic aberrations methods. <i>Prism</i> : dispersion, deviation, aberrations - applications rainbows and halos, constant deviation spectroscope. <i>Eyepieces</i> : advantage of an eyepiece over a simple lens – Huygen's and Ramsden's eyepieces, construction and working –merits and demerits of the eyepiece. <i>Resolving power</i> : Rayleigh's criterion for resolution – limit of resolution for the eye – resolving power of, (i) Prism (ii) grating (iii) telescope
UNIT-II	INTERFERENCE: division of wave front, Fresnel's biprism – fringes with white light – division of amplitude: interference in thin

	films due to, (i) reflected light, (ii) transmitted light – colours of thin films applications – air wedge – Newton's rings. <i>Interferometers</i> : Michelson's interferometer – applications, (i) determination of the wavelength of a monochromatic source of light, (ii) determination of the wavelength and separation D ₁ and D ₂ lines of sodium light, (iii) determination of a thickness of a mica sheet.
UNIT-III	DIFFRACTION: Fresnel's assumptions – zone plate – action of zone plate for an incident spherical wave front – differences between a zone plate and a convex lens –Fresnel type of diffraction – diffraction pattern due to a straight edge – positions of maximum and minimum intensities – diffraction due to a narrow slit –Fraunhofer type of diffraction – Fraunhofer diffraction at a single slit – plane diffraction grating– experiment to determine wavelengths – width of principal maxima.
UNIT-IV	POLARISATION: optical activity – optically active crystals – polarizer and analyser–double refraction – optic axis, principal plane – Huygens's explanation of double refraction in uniaxial crystals – polaroids and applications – circularly and elliptically polarized light –quarter wave plate – half wave plate – production and detection of circularly and elliptically polarized lights – Fresnel's explanation – specific rotation – Laurent half shade polarimeter– experiment to determine specific rotatory power.
UNIT-V	LASERS: general principles of lasers – properties of lasers action – spontaneous and stimulated emission – population inversion – optical pumping – He-Ne laser (principle and working) – CO_2 laser (principle and working) semiconductor laser – laser applications – holography.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Subramaniam. N andBrijlal, 2014, Optics, 25thEd,S.Chandand Co. P.R.Sasikumar, 2012, Photonics, PHIPvt Ltd, New Delhi. V.Rajendran, 2012, Engineering Physics, Tata McGraw Hill.
REFERENCE BOOKS	 Sathyaprakash, 1990,Optics,VIIedition, RatanPrakashanMandhir, New Delhi. AjoyGhatak, 2009, Optics, 4thedition, PHIPvt Ltd, New Delhi. D.Halliday,R.Resnick and J. Walker, 2001, Fundamentals of Physics,6th edition, Willey, New York. JenkinsA.Francisand White, 2011, Fundamentals of Optics, 4th edition, McGraw Hill Inc., NewDelhi.
WEB RESOURCES	 <u>https://science.nasa.gov/ems/</u> <u>https://www.youtube.com/watch?v=tL3rNc1G0qQandlist=RDCM</u> <u>UCzwo7UlGkb-8Pr6svxWo-LAandstart_radio=1andt=2472</u> <u>https://science.nasa.gov/ems/</u> <u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine/ index.html</u> <u>http://www.thephysicsmill.com/2014/03/23/sky-blue-lord- rayleigh-sir-raman-scattering/</u>

COURSE OUTCOMES: At the end of the course, the student will be able to:

CO	Staatements	Bloom's
		Taxonomylevel
COURSE OUTCOMES	Outline basic knowledge of methods of rectifying different defects in lenses, articulate technological applications of eyepieces	K1 & K2

CO2	Discuss the principle of superposition of wave, use these ideas to understand the wave nature of light through working of interferometer	K2 & K3
CO3	Extend the knowledge about nature of light through diffraction techniques; apply mathematical principles to analyse the optical instruments	К3
CO4	Interpret basic formulation of polarization and gain knowledge about polarimeter, appraise its usage in industries	K2 & K3
CO5	Relate the principles of optics to various fields of IR, Raman and UV spectroscopy and understand their instrumentation and application in industries	К3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in 3-point Scale of STRONG(S),MEDIUM (M) and LOW(L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	Μ	М	Μ	S	S	М	М
CO2	М	S	М	S	М	S	М	М	S	S
CO3	S	М	S	S	S	М	S	S	М	М
CO4	S	Μ	S	Μ	М	S	М	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	2
CO2	3	3	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	15	15
Weighted percentage of course contribution to POS	3.0	3.0	2.8	3.0	2.8

COURSE	FOU	FOURTH SEMESTER – CORE PAPER VIII (PRACTICAL 4)					
COURSE TITLE	PRAC	PRACTICAL 4					
CREDITS - 4		Hours - 3 CIA 25 CE 75					
COURSE	Demo	nstrate vario	us optical	phenomena princ	viples, working, apply with	h	
OBJECTIVES	various materials and interpret the results.						
	LIGHT(any eight experiments)						

Minimum of Eight Experiments from the list:

- 1. Determination of refractive index of prism using spectrometer.
- 2. Determination of refractive index of liquid using hollow prism and spectrometer
- 3. Determination of dispersive power of a prism.
- 4. Determination of radius of curvature of lens by forming Newton's rings.
- 5. Determination of thickness of a wire using air wedge.
- 6. Determination of Cauchy's Constants.

- 7. Determination of resolving power of grating
- 8. Determination of resolving power of telescope
- 9. Comparison of intensities using Lummer Brodhum Photometer.
- 10. Determination of range of motion using Searles goniometer.
- 11. Verification of Newton's formula for a lens separated by a distance.
- 12. Determination of refractive index of a given liquid by forming liquid lens
- 13. Determination of refractive index using Laser.
- 14. Determination of wavelengths, particle size using Laser/Monochromatic source.
- 15. Determination of resolving power of Diffraction grating using Laser
- 16. Determination of wire using Laser.

Course Outcomes:

On completion of the Course the student will be able to,

CO	Statement	Blooms Taxonomy level
C01	Acquire practical knowledge about many theories related to lenses, Aberrations, Refractive Indices and Wavelengths	K2
CO2	Understand the application side of experiments by using spectrometers Microscopes and telescopes.	К3
CO3	Gain knowledge in the scientific methods and learn the process of measuring different physical variables	К3
CO4	Use the basic laws to study the spectral properties and optical properties of the Prism	k3
CO5	Understand the given concepts and its physical significance	K2

K1 - Remembering K2-Understanding K3-Applying

Mapping of Course Outcome with POs:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	S	S	S
CO2	S	S	S	S	Μ	S	S	S	S	S
CO3	S	S	S	S	S	S	S	S	Μ	S
CO4	S	S	М	S	S	М	S	S	S	М
CO5	S	S	S	S	S	S	Μ	S	S	S
	ç	S- Stron	g	M-Me	dium	L-L	ow			
		K1	- Remen	nbering	I	K2-Und	erstandi	ing	K3-A	pplying

Mapping of Course Outcome with PSOs:

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	15	15

Weighted percentage of course contributin to POS	3	2.8	3	3	3		
	S	- Strong	M-Medium	L-Low			
	K1 - Remembering K2-Understanding K3-Applying						
COURSE	FOURTH SEN	MESTER – S	SKILL ENHANO	CEMENT COURS	E VI		
COURSE	COMPUTER PROGRAMMING IN C						
TITLE							
	Hours	- 2	CIA	25 CE 75	;		

UNITS AND COURSE DETAILS

UNIT – I INTRODUCTION TO C

The C character set – Identifiers and keywords - data types –Constants – Variables – Declaration – Expressions - Various types of Operators – Bit wise operations - Input and output functions and writing simple programs.

Unit II - Conditional and unconditional control statements Conditional and unconditional control statements – Branching, Looping - Nested control structures – Switch – Break – Continue – Go to.

UNIT – III – FUNCTIONS

Over view – Defining a function – Accessing a function – Passing arguments to a function – Recursion – Library function – the preprocessor directives. Storage classes - Scope of the variables – Automatic variables – Global variables – Static variables – Register variables.

UNIT - IV - ARRAYS

Defining, initialization rules and processing of arrays and subscripted variables – Passing arrays to functions – Multi dimensional arrays – Arrays and strings. Arranging the given set of numbers in ascending order – Arranging given set of numbers in descending order - Finding the largest number in the given set of numbers –Multiplication of two matrices of order (1 x m) and (m x n) –addition and subtraction of two matrices.

UNIT V – CASE STUDIES

Sum of n-natural numbers –Fibonacci series –roots of a quadratic equation $ax^2+bx+c=0$ - Armstrong numbers - simple interest and Compound interest.

The factorial of a given number – check whether given number is odd or even. Using function to sum integer values between 1-N using recursion techniques.

BOOK FOR STUDY

1. Programming in C and Application by D. Arulselvam

BOOKS FOR REFERENCE

1. Programming in C – E. Balagurusamy

2. Computer programming in C – Jayasree.

COURSE OUTCOMES:

On completion of the Course the student will be able to,

СО	Statement	Blooms Taxonomy level			
CO1	Students get a basic knowledge of fundamental concepts of 'C' programming language	K1			
CO2	Students become bale to write algorithm and are able to draw flow charts.	K2			
CO3	They come to know how to write simple programmes in 'C'	K3			
CO4	D4 They gained thorough knowledge of various control statements, if, if-else, do-while, while switch case. They understand how to use 'for' loops to create iteration				
CO5	They are able to write programs with structure, union and pointers	K3			
	K1 - Remembering K2-Understanding K3-Applyin	g			

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	М	S	S	S	S	S
CO2	S	М	S	S	S	S	М	М	М	М
CO3	S	М	S	М	М	М	S	S	М	S
CO4	S	М	М	М	S	S	S	М	S	S
CO5	S	S	S	S	S	S	S	S	М	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	2	3	3	3
WEITAGE	15	13	15	15	15
Weighted percentage	3.0	2.6	3.0	3.0	3.0
of course contribution					
to POS					

COURSE	FOURTH SEMESTER – SKILL ENHANCEMENT COURSE VII						
COURSE TITLE	SEC-7 - BIOMEDICAL INSTRUMENTATION						
CREDITS - 2	Hours -	Hours - 2 CIA 25 CE 75					
COURSE OBJECTIVES	the hospitals and rese	arc	crease in the use of mode h institutes. It is necess functioning of various m	ary for every student to			

UNITS AND COURSE DETAILS

UNIT-I - SAFETY INSTRUMENTATION

Introduction– Radiation safety instrumentation– physiological effects due to 50 Hz current passage – Micro shock and macro shock – Electrical accidents in hospitals – Devices to protect against electrical hazards.

UNIT-II-ADVANCES IN BIOMEDICAL INSTRUMENTATION

Introduction – Computer in medicine – Lasers in medicine – Endoscopes – Cryogenic surgery – Nuclear imaging Techniques – Thermography – ultrasonic imaging systems – Magnetic Resonance imaging (MRI) – imaging processes – MRI instrumentation – positron emission Tomography.

UNIT- III - SPECIALISED MEDICAL EQUIPMENT

Introduction – Blood cell counter – Electron microscope – Radiation detectors – Photometers and colorimeters – Digital thermometer – Audiometers – X-ray tube – X-ray machine – Radiography and fluoroscopy – image intensifiers – Angiography – Applications of X-ray.

UNIT – IV- BIO-POTENTIAL RECORDERS

Characteristics of basic recording system – Electro cardio Graphy (ECG) - Block diagram – E.C.G leads – unipolar and bipolar – ECG recording setup – Electro Encaphalo graph (EEG) – Origin – Block diagram of EGG unit – Electro myograph EMG. Block diagram EMG recorders – Digital thermometer – Computer to myography (CT) principle – Block diagram of CT scanner.

UNIT – V – PHYSIOLOGICAL ASSIST DEVICES

Introduction – pacemakers – methods of stimulation – Different modes of operation – Ventricular synchronous pace makers – pacemaker batteries – Artificial Heart values – Heart-lung machine – kidney machine.

BOOKS FOR STUDY

1. Biomedical Instrumentation - Dr.M.Arumugam BOOK FOR REFERENCE

- 1. Hand book of Biomedical Instrumentation –
- 2. R.S. Khandpur 1999 Tata Mecraw Hill

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO	Statements	Bloom's
		Taxonomy
		level
CO1	Learn the fundamentals of bioelectric potentials and electrodes	K1
CO2	Understand the basics of transducers and its types	K2
CO3	Learn about the function of ECE and EEG,	K1
CO4	Know the working of EMG, ERG and EOG. Pacemakers and its types	К3
CO5	Understand applications of Computer Tomotography(CT)	K2

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	М	S	S	М	S	М
CO3	S	S	S	S	S	М	S	S	S	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	3	3	3	3
CO4	3	3	2	3	3
CO5	3	3	3	3	3
Weightage	15	15	13	15	15
Weighted percentage of course contribution to Pos	3	3	2.6	3	3

COURSE	FOURTH SEMESTER – PART– IV					
COURSE TITLE	ENVIRONMENT	TAL SCIENCE				
CREDITS - 2	Hours 1	CIA 25	CE 75			
COURSE	To enable the st	udents realize their r	oles, responsibilities, and			
OBJECTIVES	identities as citize	ns, consumers in variou	us environmental activities			
	in a complex, interconnected world to bring a better environment for					
	the future generation					

COURSE CONTENT

Unit – I: The Environment:

The Atmosphere, Hydrosphere, Lithosphere, Biosphere, Ecology, Ecosystem, Biogeochemical Cycle (Carbon Cycle, Nitrogen Cycle), **Unit – II: Environment Pollution:**

Air Pollution, Water Pollution, Soil Pollution, Radiation Pollution.

Unit – III: Population Ecology:

Individuals, Species, Pollution, Community, Control Methods of Population, Urbanization and its effects on Society, Communicable Diseases and its Transmission, Non-Communicable Diseases.

Unit- IV: Environmental Movements in India:

Grassroot Environmental movements in India, Role of women, Environmental Movements in Tamil Nadu, State Pollution Control Board, Central Pollution Control Board. **Unit –V Natural Resources:**

Conservation of Natural Resources, Management and Conservation of Wildlife, Soil Erosion and Conservation, Environmental Laws: Water Act, 1974, Air Act, 1981, The Wildlife (Protection) Act, 1972, Environment Protection, 1986, Natural Disasters and their Management.

References:

- 1. Dr Bharucha Erach, Text Book of Environmental Studies for UG Course, University Press(India) Pvt. Ltd.
- 2. Dr Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd, Ahmedabad 380013, India.
- 3. Katyal Timi & Satake M., Environmental Pollution, Anmol Publication Pvt. Ltd, New Delhi.
- 4. G. R. Chhatwal, M. C. Mehra, M. Satake, T. Katyal & Mohan V., Environmental Radiationand Thermal Pollution and their control, Anmol Publications, New Delhi.
- 5. R. C. Brunner, Hazardous Waste Incineration, Mc Graw Hill Inc.
- 6. K. C. Agarwal, Environmental Biology, Nidi Publishing Ltd, Bikaner.
- 7. R. N. Basu (Editor), Environment Calcutta University, Kolkata.

COURSE OUTCOMES: At the end of the course, the student will be able to:

СО	-	Statements	Bloom's Taxonomy level
	CO1	Demonstrate an integrative approach to environmental issues with a focus on sustainability.	К3
COURSE OUTCOMES	CO2	Use critical thinking, problem-solving, and the methodological approaches of the social sciences, natural sciences, and humanities in environmental problem solving.	K3& K4
	CO3	Understand and evaluate the global scale of environmental problems and	K2 & K3
	CO4	Reflect critically on their roles, responsibilities, and identities as citizens, consumers and environmental actors in a complex, interconnected world.	K4
	CO5	Communicate complex environmental information to both technical and non-technical audiences	K2 & K3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point Scale of STRONG(S), MEDIUM (M) and LOW(L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	
-------	-----	-----	-----	-----	-----	-----	------------	-----	-----	------	--

CO1	S	S	S	S	S	S	S	М	S	Μ
CO2	S	М	S	S	М	S	S	S	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	М	S	S	S	S	S	S	М	М
CO5	S	S	М	S	S	S	М	М	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	2
CO5	3	3	3	3	3
WEITAGE	15	14	15	15	14
Weighted percentage of course contribution to POS	3.0	2.8	3.0	3.0	2.8

FIFTH SEMESTER – CORE–IX ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM

COURSE	FIFTH SEMESTER – CORE THEORY IX						
COURSE TITLE	ELECTRICITY, MAG	ELECTRICITY, MAGNETISM ANDELECTROMAGNETISM					
CREDITS - 4	Hours 5	CIA 25	CE 75				
COUDCE							
COURSE	To classify materials						
OBJECTIVES	properties. To analyse	the working principles	of electrical gadgets.				
	To understand the behaviour of dc, ac and transient currents. To						
		nication by electromagne					

UNITS	COURSE DETAILS
UNIT-I	 CAPACITORS AND THERMO ELECTRICITY: capacitor – principle – capacitance of spherical and cylindrical capacitors – capacitance of a parallel plate capacitor (with and without dielectric slab) – effect of dielectric –Carey Foster bridge – temperature coefficient of resistance Seebeck effect – laws of thermo emf – Peltier effect – Thomson effect – thermoelectric diagrams – uses of thermoelectric diagrams – thermodynamics of thermo couple
UNIT-II	MAGNETIC EFFECTS OF CURRENT: Biot and Savart's law – magnetic induction due to circular coil – magnetic induction due to solenoid – Helmholtz tangent galvanometer –force on a current element by magnetic field – force between two infinitely long conductors – torque on a current loop in a field - moving coil galvanometer – damping correction – Ampere's circuital law – differential form – divergence of magnetic field.

	MAGNETISM AND ELCTROMAGNETIC INDUCTION:
UNIT-III	magnetic induction B – magnetization M - relation between B, H and M – magnetic susceptibility – magnetic permeability – experiment to draw B-H curve – energy loss due to hysteresis - Importance of hysteresis curves – Faraday and Lenz laws –vector form – self- induction – coefficient of self-inductance of solenoid – Anderson's method – mutual induction – coefficient of mutual inductance between two coaxial solenoids – coefficient of coupling
UNIT-IV	TRANSIENT AND ALTERNATING CURRENTS: growth and decay of current in a circuit containing resistance and inductance – growth and decay of charge in a circuit containing resistance and capacitor – growth and decay of charge in an LCR circuit (expressions for charge only) – peak, average and rms values of ac – LCR series and parallel circuits – resonance condition – Q factor – power factor.
UNIT-V	MAXWELLSEQUATIONSANDELECTROMAGNETICWAVES:Maxwell's equations in vacuum, material media– physicalsignificance of Maxwell's equations –displacement current – planeelectromagnetic waves in free space – velocity of light – Poyntingvector–electromagnetic waves in a linear homogenous media –refractive index.PROFESSIONAL COMPONENTS:expert lectures – seminars –
UNIT-VI	webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 Murugeshan. R., - Electricity and Magnetism, 8thEdn, 2006, S.Chandand Co, New Delhi.\ Sehgal D.L., Chopra K.L, Sehgal N.K., - Electricity and Magnetism, Sultan Chand and Sons, New Delhi. M. Narayanamurthy and N. Nagarathnam, Electricity and Magnetism, 4th Edition. National Publishing Co., Meerut.
REFERENCE BOOKS	 Brijlal and Subramanian, Electricity and Magnetism, 6th Edn.,RatanandPrakash, Agra. Brijlal, N.Subramanyan and JivanSeshan, Mechanics and Electrodynamics (2005), Eurasia Publishing House (Pvt.) Ltd., New Delhi. David J. Griffiths, Introduction to Electrodynamics, 2ndEdn. 1997, Prentice Hall of India Pvt. Ltd., New Delhi D. Halliday, R. Resnik and J. Walker - Fundamentals of Physics, 6thEdn., Wiley, NY, 2001.
WEB RESOURCES	 8. <u>https://www.edx.org/course/electricity</u> 9. <u>https://www.udemy.com/courses/</u> electricity 10. <u>https://www.edx.org/course/magnetism</u> 11. <u>http://www.hajim.rochester.edu/optics/undergraduate/courses.html</u>

COURSE OUTCOMES: At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
C	01	Describe various thermo-electric effects and their	K3
		properties.	
С	02	Apply Biot and Savart law to study the magnetic	K3
		effect of electric current.	

COURSE OUTCOMES	CO3	Use Faraday and Lenz laws in explaining self and mutual inductance.	K2 & K3
	CO4	Analyze the time variation of current and potential difference in AC circuits.	K4
	CO5	Relate different physical quantities used to explain magnetic properties of materials.	K1 & K3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point Scale of STRONG(S), MEDIUM (M) and LOW(L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	М	S	S	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	S	М	S	М
CO4	S	S	S	S	S	S	S	М	М	М
CO5	S	S	М	S	S	S	М	М	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	15	15	15
Weighted percentage of course contribution to POS	3.0	2.8	3.0	3.0	3.0

FIFTH SEMESTER - CORE PAPER X (Theory) ATOMIC and NUCLEAR PHYSICS

COURSE	FIFTH SEMESTER	- CORE PAPER X (Theory)
COURSE TITLE	ATOMIC and NUCI	LEAR PHYSICS	
CREDITS 4	Hours 5	CIA 25	CE 75
OBJECTIVES	To make students under quantum numbers, coup moments of an electron ionization potentials, sp electric fields; To get kn concepts used in nuclea classification of elemen	pling schemes and analy is; To gain knowledge o plitting of spectral lines nowledge on radioactive ar reaction; to understan	vsis of magnetic n excitation and in magnetic and e decay; To know the

UNITS COURSE DETAILS

	VECTOR ATOM MODEL: introduction to atom model – vector
UNIT-I	atom model – electron spin –spatial quantisation– quantum numbers associated with vector atom model – L-S and J-J coupling – Pauli's exclusion principle – magnetic dipole moment due to orbital motion and spin motion of the electron – Bohr magnetron – Stern-Gerlach experiment – selection rules – intensity rule.
UNIT-II	ATOMIC SPECTRA: origin of atomic spectra – excitation and ionization potentials – Davis and Goucher's method – spectral terms and notations – fine structure of sodium D-lines – Zeeman effect –Larmor's theorem – quantum mechanical explanation of normal Zeeman effect – anomalous Zeeman effect (qualitative explanation) –Paschen-Back effect – Stark effect.
UNIT-III	RADIOACTIVITY: discovery of radioactivity – natural radio activity – properties of alpha rays, beta rays and gamma rays – Geiger-Nuttal law –Gammow's theory of alpha decay (qualitative study)– neutrino theory of beta decay – nuclear isomerism –
UNIT-IV	NUCLEAR REACTIONS: conservation laws of nuclear reaction – Q-value equation for a nuclear reaction – threshold energy – scattering cross section – artificial radio activity – application of radio isotopes – classification of neutrons – models of nuclear structure – liquid drop model – shell model.
UNIT-V	ELEMENTARY PARTICLES: classification of elementary particles – fundamental interactions – elementary particle quantum numbers –iIsospin and strangness quantum number – Conservation laws and symmetry – quarks – quark model (elementary ideas only) – discovery of cosmic rays – primary and secondary cosmic rays – latitude effect– altitude effect.
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars — webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 R. Murugesan, Modern Physics, S. Chand and Co. (All units) (Units IandII-Problems) Brijlaland N. Subrahmanyam, Atomic and Nuclear Physics, S. Chand and Co. (All units) J. B. Rajam, Modern Physics, S. Chand and Co. SehgalandChopra, Modern Physics, Sultan Chand, New Delhi Arthur Beiser- Concept of Modern Physics, McGraw Hill Publication, 6th Edition.
REFERENCE BOOKS	 Perspective of Modern Physics, Arthur Beiser, McGraw Hill. Modern Physics, S. Ramamoorthy, National Publishing and Co. Laser and Non-Linear Optics by B.B.Laud, Wiley Easter Ltd.,NewYork,1985. Tayal, D.C.2000 – Nuclear Physics, Edition, Himalaya Publishing House, Mumbai. Irving Kaplan (1962) Nuclear Physics, Second Edition, Oxford and IBH Publish and Co, New Delhi. J.B. Rajam– Atomic Physics, S. Chand Publication, 7th Edition. Roy and Nigam, – Nuclear Physics (1967) First edition, Wiley Eastern
WEB RESOURCES	Limited, New Delhi. 1. http://hyperphysics.phy-astr.gsu.edu/hbase/hframe.html 2. https://makingphysicsfun.files.wordpress.com/2015/01/photoelect-ric-effect.pptx 3.

4. <u>https://www.khanacademy.org/science/in-in-class-12th-physics-</u> india/nuclei

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level			
	CO1	List the properties of electrons and positive rays, define specific charge of positive rays and know about different mass spectrographs.	K1,K2 & K3			
	CO2	Outline photoelectric effect and the terms related to it, State laws of photoelectric emission, Explain experiments and applications of photo electric effect, Solve problems based on photoelectric equation.	K2 & K3			
OUTCOMES	COURSE TCOMESCO3Explaindifferent atomatom models,Describedifferent different guantum numbers and different coupling schemes.					
	CO4	Differentiate between excitation and ionization potentials, Explain Davis and Goucher's experiment, Apply selection rule, Analyse Pasche - Back effect, Compare Zeeman and Stark effect.	K2 & K3			
	CO5	Understand the condition for production of laser, Appreciate various properties and applications of lasers.				

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point Scale of STRONG(S), MEDIUM (M) and LOW(L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	S	S	М	М	М
CO3	S	S	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	М	М
CO5	S	М	S	S	М	S	S	М	М	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	2	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	14	13	15	15	15
Weighted percentage of course contribution to POS	2.8	3.0	3.0	3.0	3.0

FIFTH SEMESTER – CORE -ANALOG AND COMMUNICATION ELECTRONICS

COURSE	FIFTH SEMESTER – CORE PAPER XI (Theory)						
COURSETITLE	ANALOG AND COM	ANALOG AND COMMUNICATION ELECTRONICS					
CREDITS - 4	Hours 5	CIA 25	CE 75				
COURSE OBJECTIVES	details. To study the	working and application various electronic circu basis of audio and v aspects of satellite	its. To study them in video communication				

Г

UNITS	COURSE DETAILS
UNIT-I	DIODES: diode characteristics – rectifiers - clipper circuits, clamping circuits. half wave rectifier, center tapped and bridge full wave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of a power supply, qualitative description of shunt capacitor filter, Zener diode as voltage regulator.
UNIT-II	TRANSISTOR AMPLIFIERS: transfer configurations: CB, CE CC modes – I-V characteristics and hybrid parameters – DC load line – Q point self-bias – RC coupled CE amplifier –power amplifiers – classification of power amplifiers: A, B, C – push pull amplifiers.
UNIT-III	TRANSISTOR OSCILLATORS: feedback amplifier - principle of feedback, positive and negative feedback of voltage and current gain, advantages of negative feedback - Barkhausen's criterion. Transistor oscillators: Hartely, Colpitt, Phase shift oscillators with mathematical analysis.
UNIT-IV	OPERATIONAL AMPLIFIERS: differential amplifiers – OPAMP characteristics –IC 741 pin configuration – inverting and non-inverting amplifiers – unity follower –summing and difference amplifiers – differentiator and integrator.
UNIT-V	MODULATION AND DEMODULATION theory of amplitude modulation - frequency modulation – comparison of AM and FM – phase modulation – sampling theorem – pulse width modulation – pulse modulation systems: PAM, PPM, and PCM – demodulation: AM and FM detection - duper heterodyne receiver (block diagram)
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars – webinars – industry inputs – social accountability – patriotism
TEXT BOOKS	 V.K.Mehta - Principles of Electronics, S.Chandand Co. Ltd., 2004. V.Vijayendran - Integrated Electronics, S.Vishwanathan Publishers, Chennai. B.L. Theraja - A Text Book of Electrical Technology. John D. Ryder - Electronic fundamentals and Applications. Malvino - Electronic Principles, Tata McGraw Hill.
REFERENCE BOOKS	 B. Grob - Basic Electronics, 6th edition, McGraw Hill, NY, 1989. Herbert Taub and Donald schilling - Digital Integrated Electronics, McGraw Hill, NY. Ramakant A. – Op amp principles and linear integrated circuits, Gaykward Bagde and S. P. Singh - Elements of Electronics. Millman and Halkias- Integrated Electronics, Tata McGraw Hill.
WEB	1. https://www.queenmaryscollege.edu.in/eresources/undergraduate

RESOURCES	program/py157
	2. <u>www.ocw.mit.edu>> Circuits and Electronics</u>
	3. <u>www.ocw.mit.edu>> Introductory Analog Electronics Laboratory</u>
	4. <u>https:// www.elprocus.com> semiconductor devices</u>
	5. <u>https:// www.britannica.com>technology</u>

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
	CO1	Explain the basic concepts of semiconductors devices.	K2 & K3
CO2		Know and classify the basic principles of biasing and transistor amplifiers	K1 & K2
COURSE OUTCOMES	CO3	Acquire the fundamental concepts of oscillators.	K2 & K3
OUTCOMES	CO4	Understand the working of operational amplifiers	K1 & K2
	CO5	Learn and analyze the operations of sequential and combinational digital circuits	K2 & K3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	М	S	М	М	М
CO3	М	М	S	L	S	S	L	S	S	S
CO4	Μ	S	S	S	S	S	S	М	L	М
CO5	S	М	S	S	М	М	S	М	М	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	2	2	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	13	14	15	15
Weighted percentage of course contribution to	3.0	2.6	2.8	3.0	3.0
POS					

EC 1 Option 1 -LASERS AND FIBEROPTICS

ELECTIVE COURSE I LASERS AND FIBEROPTICS							
Credits 3	Hours 4	CIA	25	CE 75			
Learning Objec	tive: The students will	learn the	fundamentals,	types of lasers, laser			
instrumentation a	nd their applications als	o the inter o	connect between	optics with lasers.			
UNITS		COURS	E DETAILS				
	FUNDAMENTALS	OF LASE	R: basic princip	les: spontaneous and			
UNIT-I	stimulated emission – Einstein's coefficient – pumping mechanism: optical, electrical and laser pumping – population inversion – two and three level laser system – resonat or configuration – quality factor – threshold condition – concept of Qswitching– theory of– cavitydumping.						
UNIT-II	TYPES OF LASE laser,Nd:Glass laser– laser, doped semicond laser: HCL laser, DF- gas laser (He-Ne laser)	semicond uctorlaser, CO_2 , CO_2), CO_2 laser,	uctor laser: int injection laser – hemical laser. G Copper vapour	rinsic semiconductor dye laser – chemical aslaser: neutral atom laser.			
UNIT-III	APPLICATIONSOF optical communication material processing, p melting – medical app laserin astronomy	n – materia owder feed	f processing: las er, laser heating	er instrumentation of g, laser welding, laser			
UNIT-IV	FIBER OPTICS: bas principles of light pro – optical fiber – coher – phase shift and atter fiber: single mode and fiber – fiber optic sens	pagation the ent bundle mution duri multi-mod	rough fiber – to – numerical ape ng total internal e fiber – step in	tal internal reflection erture and skew mode l reflection – types of dex and graded index			
UNIT-V	CHARACTERISTIC	S AND tracteristics rption loss or sandsplic (OTDR) at	FABRICATIO : mechanical and scattering ers – fiber term ad its uses – fi	DN OF OPTICAL and transmission loss measurements – ination – optical time			
TEXT BOOKS	 B.B. Laud - Laser Publications Third E An Introduction to M.N.S., Chand and C J. Wilson and J.F. Pearson Education, 	Edition, New laser, theo Co, New De B. Hawkes	v Delhi. ory and applicat lhi	ions by Avadhunulu,			
REFERENCE BOOKS	 A.Sennaroglu, "Phot Applications" McGr K.R.Nambiar, "Lase International, 2004. Optic, AjoyGhatak, 2017. 	aw-HillEdu ers: Principl	cation,2010. es, Typesand Ap	oplications", New Age			

COURSE OUTCOMES:

On completion of the Course, the student will be able to,

СО	Statement	Blooms Taxonomy level
----	-----------	------------------------------

CO1	Explore the Laser fundamentals	K2
CO2	Understand the types of Lasers	K3
CO3	Get adequate knowledge about Industrial and medical applications of laser for day-to-day applications	K2
CO4	Recognize and classify the structure of Optical fibre	K1&K2
CO5	Understand the Optical sensors and their applications	K2&K3
	K1 - Remembering K2-Understanding H	K3-Applying

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	М	М	S	S	М	S
CO2	S	М	S	S	М	S	М	М	М	М
CO3	S	М	S	S	М	М	S	S	М	S
CO4	М	М	М	М	S	S	М	S	S	М
CO5	S	М	S	S	S	S	S	S	М	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	15	15	15	15
Weighted percentage of course contribution to POS	3.0	3.0	3.0	3.0	3.0

EC 1 Option 2- MATHEMATICAL PHYSICS

ELECTIVE COURSE I MATHEMATICAL PHYSICS							
Credits 3	Hours	4	CIA 25	CE 75			
Learning Objective	e: To under	stand higher	r mathematical conce	pts which are applied to			
solve problems in Pl	hysics and s	imilar situati	ions				
UNITS	COURSE	DETAILS					
				c, Hermitian, unitary and			
	U		⊥	on of a matrix – Eigen			
UNIT-I				ley-Hamilton theorem –			
				theorem – similarity			
		U		symmetric matrices.			
	VECTOR CALCULUS: vector differentiation – directional						
				gnificance of gradient,			
UNIT-II	•	▲		identities – line, surface			
	and volume integrals – statement, proof and simple problems for						
	Gauss's div	ergence the	orem, Stoke's theorem	n, Green's theorem.			
				ORDINATES: tangent			
UNIT-III	basis vector	rs – scale fac	ctors – unit vectors in	cylindrical and spherical			

	coordinate systems -gradient of a scalar -divergence and curl of a
	vector – Laplacian in these coordinate systems.
UNIT-IV	 FOURIER SERIES: periodic functions –Dirichlet's conditions – general Fourier series – even and odd functions and their Fourier expansions – Fourier cosine and sine – half range series – change of length of interval. Fourier analysis of square wave, saw-tooth wave, half wave/full wave rectifier wave forms. FOURIER TRANSFORMS: Fourier Integral theorem(Statement only)–Fourier, Fourier sine and Fourier cosine transforms,– Fourier transform of single pulse – trigonometric, exponential and Gaussian functions – inverse Fourier transform – convolution theorem.
UNIT-V	APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS (PDE): PDE for transverse vibrations in elastic strings (one dimensional wave equation) –one dimensional heat flow equation – solutions to these PDE's by method of separation of variables – problems based on boundary conditions and initial conditions.
TEXT BOOKS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Mathematical Physics – P. K. Chattopadhyay, New Age International Publishers. Mathematical Physics – B. D. Gupta. Mathematical Physics – H. K. Das, S. Chand and Co, New Delhi.
REFERENCE BOOKS	 Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. Engineering Mathematics III- B, M. K. Venkataraman, Applied Mathematics for Scientists and Engineers, Bruce R. Kusseand Erik A. Westwig, 2nd Ed, WILEY-VCH Verlag, 2006. Vector space and Matrices – J. C. Jain, Narosa Publishing House Pvt. Ltd.

On completion of the Course the student will be able to,

СО	Statement	Blooms Taxonomy level
CO1	Solve ordinary and partial differential equations in physical sciences.	К3
CO2	Use and apply Green Functions	K2& K3
CO3	Use Fourier series and integral transformations and understand the basic theory of vectors and tensors.	K1
CO4	Understand the functions of complex variables and elements of distribution theory	K2
CO5	Analyze Fourier series	K3

K1 - Remembering K2-Understanding K3-Applying

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	М	М	S	S	S	S
CO2	S	М	S	S	М	S	S	М	S	S
CO3	S	S	S	S	S	М	S	S	М	S
CO4	S	М	М	S	S	S	М	М	S	М
CO5	S	М	S	М	S	М	S	S	М	S

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	2	3	3
CO5	3	2	3	3	3
WEITAGE	15	13	14	15	15
Weighted percentage of course contribution to POS	3.0	2.6	2.8	3.0	3.0

EC 2 Option 1 -COMMUNICATION PHYSICS

ELECTIVE COU	RSE II C	OMMUNIC	ATION PHYSIC	CS	-					
Credits 3	Hours	5	CIA 25	CE 75						
Learning Objective: To get a thorough knowledge on transmission and reception of										
radio waves, the	different t	ypes of con	nmunication like	fibre optic, radar, satelli	te,					
cellular										
UNITS	COURS	E DETAILS								
UNIT-I	modulati limitation comparis demodul receivers FM recei	RADIO TRANSMISSION AND RECEPTION: transmitter – modulation types of modulation – amplitude modulation – limitations of amplitude modulation – frequency modulation – comparison of FM and AM – demodulation- essentials in demodulation – receivers: AM radio receivers – types of AM radio receivers – stages of super heterodyne radio receiver, advantages – FM receiver – difference between FM and AM receivers.								
UNIT-II	principle – classifi based on	of fiber opti- cation based the number	cs – advantages – on the refractive of modes of pro	ON: introduction – bas - construction of optical fib index profile – classificatio opagation – losses in optic roptic communication	oer on					
UNIT-III	-radar ra radar -tr principle SATELI	ange – anter acking radar – CW Doppl LITE COM	ina scanning –pu – moving target i ler radar IMUNICATION	duction - basic radar syste alsed radar system – sear indicator Doppler effect-M : introduction history	rch TI of					
UNIT-IV	satellites – satellite communication system – satellite orbits – basic components of satellite communication system – commonly used frequency in satellite – communication –multiple access communication – satellite communication in India									

UNIT-V	MOBILE COMMUNICATION: introduction – concept of cell – basic cellular mobile radio system – cellphone – facsimile – important features of fax machine – application of facsimile – VSAT (very small aperture terminals) modem IPTV (internet protocol television) -Wi-Fi-4G (basic ideas)
TEXT BOOKS	 V.K.Metha, Principles of Electronics, S. Chand andCoLtd., 2013 Anokh Singh and Chopra A.K., Principles of communication Engineering, S.Chandand Co, 2013
REFERENCE BOOKS	 J.S. Chitode, Digital Communications, 2020, Unicorn publications Senior John. M, Optical Fiber Communications: Principles and Practice, 2009, Pearson Education.

At the end of the course, the student will be able to:

СО	Statement	Blooms Taxonomy level
CO1	Understand the principles of photography and image formation.	K2
CO2	Understand the essential components of conventional and cameras.	К3
CO3	Become familiar with camera using films and its different types.	К3
CO4	Know the principle, function and types of digital cameras and apply the ideas in recent developments.	К3
CO5	Recognize the applications of digital imaging system in recent days.	K2 &K3
K1 -	- Remembering K2-Understanding K3-Applying	

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	S	S	S	S	S	М	S	М
CO2	S	S	M	S	М	S	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	М	М
CO5	S	М	S	S	М	S	S	М	S	М

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	15	15
Weighted percentage of course contributin to POS	3	2.8	3	3	3

EC 2 Option 1 -- DIGITAL PHOTOGRAPHY

ELECTIVE COURSE II - DIGITAL PHOTOGRAPHY									
Credits 3	Hours 5	CIA 25	CE 75						
Learning Object	tive: To understand the princ	ciples of photography	and image formation						
and the science and arts behind it. To understand the essential components of									
conventional and digital cameras and also the different image processing techniques.									
UNITS	NITS COURSE DETAILS								
UNIT-I	PHOTOGRAPHY AND FORMATION: principle wavelengths, colours – sl making light form images pin-hole images – lens ins size – imaging of closer sub	-chemical route and hadows – light inter -pin-hole images – p tead of pin-hole – fo bjects.	digital route –light, nsity and distance – practical limitations to local length and image						
UNIT-II	LENSES – CONTROLLING THE IMAGES: photographic lens – focal length and angle of view (<i>problems</i>) – focusing movement – aperture and f-numbers (<i>problems</i>) – depth of field– depth of focus – image stabilization – lenses for digital cameras – lens and camera care								
UNIT-III	CAMERA USING FILMS AND ITS TYPES: camera and its essential components– shutter – aperture – light measurement – film housing – camera types: view camera– view finder camera – Reflex camera– single lens reflex (SLR) camera								
UNIT-IV	DIGITAL CAMERAS P digital image capturing – information – megapixel – digital zooming – image sta modes – file formats (TIF types – digital cameras: ca camera – digital SLR.	PRINCIPLE AND comparison of digita grain, noise and pixe abilizer – bit depth – w F, RAW and JPEG	I and analog picture I density – optical and white balance – colour – storage cards and						
UNIT-V	THE DIGITAL IMAG computer and its periphera editing: navigating the ima brightness and contrast dodge/burn – cloning and image – advanced editing: magic wand – printing dig dye sub printer – lambda/lig	als – software: savin age – undo/redo/histo – colour balance retouching – remov histogram/levels – cu ital images: inkjet pr	g digital file – basic bry – crop – rotate – – hue/saturation – ing an element in an rves – selection tools:						

TEXT BOOKS	 Michel J.Langford , Anna Fox and Richard Sawdon Smith, Basic photography, 9th Edition, 2010-NL, Focal press, London Henry Carroll, Read this if you want to take great photographs of people, Laurence King Publishing
REFERENCE BOOKS	 Mark Galer, Digital Photography in Available Light essential skills, 2006, Focal press, London Paul Harcourt Davies, The Photographer's practical handbook, 2005, UK PRESS

At the end of the course, the student will be able to:

СО	Statement	Blooms Taxonomy level
CO1	Understand the principles of photography and image formation.	K2
CO2	Understand the essential components of conventional and cameras.	К3
CO3	Become familiar with camera using films and its different types.	К3
CO4	Know the principle, function and types of digital cameras and apply the ideas in recent developments.	К3
CO5	Recognize the applications of digital imaging system in recent days.	K2 &K3
K1 -	- Remembering K2-Understanding K3-Applying	

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO\PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	М	М	S	S	S	S	S	М	S	М
CO2	S	S	М	S	М	S	S	М	М	М
CO3	М	М	S	М	S	S	М	S	S	S
CO4	М	S	S	S	S	М	S	М	М	М
CO5	S	М	S	S	М	S	S	М	S	М

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	15	15

Weighted percentage of					
course contribution to POS	3	2.8	3	3	3

COURSE	FIFTH SEM	ESTER	-XII (C	ORI	E PRA	CTICAL)	
COURSE TITLE			(_)	
CREDITS - 4	Hours	4	(CIA	25		CE 75
COURSE	Demonstrate	various	optical	phen	omena	principles	s, working, apply with
OBJECTIVES	various mater	ials and	interpret	the re	esults.		
GENERAL							
Minimum of Eig	ht Experimen	ts from	the list:				
	rating Normal in						
	rating minimum	deviatio	m.				
3. Diffraction a							
4. Specific rota							
5. Bi-prism – D							
6. Thickness of							
7. Brewster's la							
8. Double refra)					
9. $Y - by Corlu$		cc .:					
10. Dispersive p		ffraction	grating.				
11. Diffraction a		and Ad	iohotio Vo	una'a	modul	us of the m	aterial of the rod.
13. Forbe's meth							aternal of the rou.
			•			th of Merc	ury spectral lines.
							ercury spectral lines.
16. Spectromete	•			11 - V	vave ie	ingui or ivit	creary spectral lines.
17. Spectromete							
18. Spectromete			m				
19. Rydberg's c		gicu pris	5111.				
20. e/m Thomso							
20. c/m monst 21. h by photoc							
		o oondu	iaton (I D	נם			
22. Spectral res					a of th		
23. Potentiomet				stanc		- COII.	
24. Potentiomet				iont	ofracia	tongo of th	a agil
25. Carey Foste							
				01	wragne	ne momen	t of a bar magnet and
	cular coil carry			° D			
	agnetometer -	Determ	mation of	\mathbf{P}^{H}	using c	circular col	il carrying current– Tan
B position.	A SM 's C	C					
28. B.G – Figur	e of Merit – C	narge Se	ensitivity				

On completion of the Course the student will be able to,

CO

		Taxonomy
		level
CO1	Have a deep knowledge of fundamentals of optics, electric circuits and magnetism	K3
CO2	Gain the knowledge and understanding the components and handling equipments	K1
CO3	Verify the experimental results with theoretical values	K3
CO4	Get the idea about experimental setup and arrangement of devices	k3
CO5	Understand the basic concepts in optics and electricity	K1 & K2

K1 - Remembering K2-Understanding K3-Applying

MAPPING OF COURSE OUTCOME WITH POS:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	М
CO3	S	Μ	М	S	S	Μ	S	М	Μ	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	Μ	S	S	S	S	S
	S	S- Strong M-Medium			dium	L-Low				
		K1 - Remembering			ŀ	K2-Und	erstandi	ing	K3-A	pplying

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	2	3	3	3
Weightage	15	14	15	15	15
Weighted percentage of course contributin to POS	3	2.8	3	3	3

COURSE	FIFTH SEMESTER	– Part IV	
COURSE TITLE	VALUE EDUCATIO	N	
CREDITS - 2	Hours 2	CIA 25	CE 75
COURSE OBJECTIVES	strengthen the emotional learners responsible and of thinking and inculc	al and spiritual aspects of d cooperative citizens, of ate spirit of national i	strength of the learners, of the learners. make the levelop democratic way ntegration, develop the vidual and diversity in

COURSE CONTENT

Unit I - Yoga and Physical Health

- 1.1 Physical Structure Three bodies Five limitations
- 1.2 Simplified Physical Exercises Hand Exercises -Leg Exercises Breathing Exercises – Eye Exercises – Kapalapathi
- 1.3 Maharasanas 1-2 Massages Acu-puncture Relaxation
- Yogasanas Wigge Slandskar Padmasana Vajrasanas Chakrasanas (Side) – Viruchasanas – Yoga muthra – Patchimothasanas – Ustrasanas – Vakkarasanas – Salabasanas

Unit II - Art of Nurturing the life force and Mind

- 2.1 Maintaining the youthfulness Postponing the ageing process
- 2.2 Sex and Spirituality Significance of sexual vital fluid Married life Chastity
- 2.3 Ten stages of Mind
- 2.4 Mental frequency Methods for concentration

Unit III - Sublimation

- 3.1 Purpose and Philosophy of life
- 3.2 Introspection Analysis of Thought
- 3.3 Moralization of Desires
- 3.4 Neutralization of Anger

Unit IV – Human Resources Development

- 4.1 Eradication of worries
- 4.2 Benefits of Blessings
- 4.3. Greatness of Friendship
- 4.4 Individual Peace and World Peace

Unit V – Law of Nature

- 5.1 Unified force Cause and Effect system
- 5.2 Purity of Thought and Deed and Genetic Centre
- 5:3 Love and Compassion
- 5.4 Cultural Education Five fold Culture

(16 hours) 1) போகமும் உடல்நலமும் உடலமைப்பு — 3 உடல்கள் - ஐந்தில் அளவுமுறை 1.1 எளியமுறை உடற்பயிற்சி — கைப்பயிற்சி — கால் பயிற்சி - மூச்சுபயிற்சி — கண் 1.2 பயிற்சி — கபாலபதி மகராசனம் 1-2 – உடல் தேய்த்தல் - அக்குபிரஷர் பயிற்சி – உடல் தளர்த்தல் 1.3 யோகாசனங்கள்: குக்கு காசனம் - பத்மாசனம் - வஜ்ராசனம் - சக்கராசனம் 1.4 (பக்கவாட்டில்) — விருச்சாசனம் - யோக முத்ரா — பச்சி மோத்தாசனம் -உஸ்ட்ராசனம் - வக்கராசனம் - சலபாசனம் (16 hours) 2) உயிர்வளமும் - மனவளமும் 2.1 இளமை காத்தல் - முதுமையைத் தள்ளிப்போடுதல் 2.2 பாலுணர்வும் ஆன்மீகமும் - வித்தின் மகிமை - இல்லற வாழ்வு — கற்புநெறி 2.3 மனதின் பத்து படிநிலைகள் 2.4 மன அலைச்சுழல் - மன ஓாமைக்கான பயிற்சிகள் (16 hours) 3) குணநலப்பேறு 3.1 வாழ்வின் நோக்கம் - வாழக்கைத் தத்துவம் 3.2 அகத்தாய்வு — எண்ணம் ஆராய்தல் 3.3 ஆசை சீரமைத்தல் 3.4 சினம் தவிர்த்தல் (16 hours) 4) மனிதவள மேம்பாடு 4.1 கவலை ஒழித்தல் 4.2 வாழ்த்தும் பயனும் 4.3 நட்பு நலம் 4.4 தனிமனித அமைதி – உலக அமைதி (16 hours)5) இயற்கை நியதி 5.1 ஒருங்கிணைப்பு ஆற்றல் - செயல்விளைவுத் தத்துவம் 5.2 மனத்தூய்மை, வினைத்தூய்மை – கருமையம் 5.3 அன்பும் கரணையும் 5.4 பண்பாட்டுக் கல்வி — ஐந்தொழுக்கப் பண்பாடு

Reference Book:

Manavalakalai Yoga, Vethathri Publications, Tamil Nadu, 2008.

Evaluation Pattern:

Practical [Performing Yoga & Meditation] – 25 marksTheory [End-Semester Examination] – 75 marks

CO	Statements	Bloom's Taxonomylevel
CO1.	Build physical and mental strength of the learners	Synthesis (Level K6)
CO2.	Strengthen the emotional and spiritual aspects of the learners	Synthesis (Level K6)
CO3.	Make the learners responsible and cooperative citizens	Synthesis (Level K6)
	Develop democratic way of thinking and inculcate spirit of national integration	Application (Level K3)
	Develop the practice of paying respect for dignity of individual and diversity in society	Application (Level K3)

MAPPING OF COURSE OUTCOME WITH POS:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	М
CO3	S	М	М	S	М	Μ	S	М	М	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	М	S	S	S	S	S
	S	S- Stron	g	M-Medium		L-L	ow			

K1 - Remembering K2-Understanding

K3-Applying

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	14	15	15
Weighted					
percentage of					
course	3	3	2.8	3	3
contributin to					
POS					

COURSE	FIFTH SEMESTER – Part IV
COURSE TITLE	SUMMER INTERNSHIP / INDUSTRIAL TRAINING
CREDITS - 2	Hours NIL
COURSE OBJECTIVES	To offer a hands-on-learning experience, that allows the learners to maximize the outcome and benefits of their theoretical knowledge through practical implementation. By adding technical skills, soft skills and professional experience to the learners' resume, they can enhance their chances of securing the job they desure To provide the learners an experience of the real corporate world and thus help them understand the expectations and requirements of the industry. To enable the learners build their network and professional relationships, which turns them into confident future professionals.

Duration of the Training:

- * The learners of all the Under-Graduation Programmes are to undergo the Internship / Industrial Training during the summer vacation, after completion of the IV Semester examinations. The training period is 30 working days.
- * Evaluation:

*

- * After completion of the training, the evaluation of the performance of the learners willbe done in the V semester.
- * Two credits will be awarded for the best performers.
- * Viva-voce examination will be conducted and the learners have to appear for the Viva-voce individually.
- * At the time of Viva-voce, the learners have to submit the given records to the examiner.
 - Work Diary, endorsed by the trainer
 - A complete report on the objectives, modules and outcomes.
 - A certificate, duly signed and issued by the trainer

vel
l
l
vel

CO1	S	S	S	Μ	S	S	S	S	S	S
CO2	S	S	S	S	S	М	S	S	S	S
CO3	S	М	М	S	М	S	S	S	Μ	М
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	М	S	S	М	S	S
		S- Strong		M-Medium		L-Low				

K1 - Remembering

K2-Understanding

K3-Applying

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	2	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	14	14	15
Weighted percentage of course contributin to POS	3	3	2.8	2.8	3

COURSE	SIXTH SEMESTER – CORE PAPER XIII (Theory)						
COURSE TITLE	SOLID STATE PHYSICS						
CREDITS 3	Hours 5	CIA 25	CE 75				
COURSE OBJECTIVES	To understand constituents, properties and models of nucleus. To give reason for radioactivity and study their properties. To learn about the principles of various particle detectors and accelerators. To acquire knowledge on different types of nuclear reactions and their applications. To know the reason for cosmic rays and their effect on the surface of earth and also understand the classification of elementary particles.						

UNITS	COURSE DETAILS
	BONDING IN SOLIDS, CRYSTAL STRUCTURE: types of bonding –ionic bonding – bond energy of NaCl molecule –covalent
	bonding – metallic bonding – hydrogen bonding – Vander-Waals
	bonding – crystal lattice – lattice translational vectors – lattice with basis – unit cell – Bravais' lattices – Miller indices – procedure for
UNIT-I	finding them –packing of BCC and FCC structures – structures of
	NaCl and diamond crystals –reciprocal lattice – reciprocal lattice
	vectors – properties – reciprocal lattices to SC, BCC and FCC
	structures – Brillouin zones – X-rays – Bragg's law(simple problems)
	- experimental methods: Laue method, powder method and rotating
	crystal method
	ELEMENTARY LATTICE DYNAMICS: lattice vibrations and
	phonons: linear monoatomic and diatomic chains. acoustical and
	optical phonons –qualitative description of the phonon spectrum in
UNIT-II	solids –Dulong and Petit's Law – Einstein and Debye theories of specific heat of solids – T^3 law (qualitative only)–properties of
	metals – classical free electron theory of metals(Drude-Lorentz) –
	Ohm's law – electrical and thermal conductivities – Weidemann-
	Franz' law.
	MAGNETIC PROPERTIES OF SOLIDS: permeability,
	susceptibility, relation between them - classification of magnetic
	materials – properties of dia, para,ferro, ferri and anti
UNIT-III	ferromagnetism- Langevin's theory of diamagnetism - Langevin's
	theory of paramagnetism- Curie-Weiss law – Weiss theory of
	ferromagnetism(qualitative only) – domains – discussion of B-H
	curve –hysteresis and energy loss – soft and hard magnets. DIELECTRIC PROPERTIES OF MATERIALS: polarization
	and electric susceptibility –local electric field of an atom – dielectric
	constant and polarisability – polarization processes: electronic
	polarization – calculation of polarisability – ionic, orientational and
UNIT-IV	space charge polarization –internal field –Clausius-Mosotti relation –
	frequency dependence of dielectric constant –dielectric loss – effect
	of temperature on dielectric constant – classical theory of electric
	polarisability –normal and anomalous dispersion –Langevin-Debye
	equation. FERROELECTRIC and SUPERCONDUCTING PROPERTIES
	OF MATERIALS: <i>ferroelectric effect:</i> Curie-Weiss Law –
	ferroelectric domains, P-E hysteresis loop – <i>elementary band theory:</i>
	band gap(no derivation) – conductor, semiconductor (P and N type)
UNIT-V	and insulator– Hall effect – measurement of conductivity (four probe
	method) - Hall coefficient.
	Superconductivity: experimental results – critical temperature – critical
	magnetic field –Meissner effect –type-I and type-II superconductors – London's equation and penetration depth – isotope effect – idea of
	BCS theory (no derivation)
	PROFESSIONAL COMPONENTS: expert lectures –seminars —
UNIT-VI	webinars – industry inputs – social accountability – patriotism
	1. Introduction to Solid State Physics, Kittel, Willey Eastern Ltd (2003).
	2. Solid state Physics, Rita John,1st edition, Tata McGraw Hill publishers
	(2014).
TEXT BOOKS	3. Solid State Physics , R L Singhal, Kedarnath Ram Nathand Co., Meerut
	(2003)4. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006,
	Prentice-Hall of India
	5. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw

	 Hill 6. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning 7. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer 8. Elementary Solid State Physics, 1/e M. Ali Omar, 1999, Pearson India 9. Solid State Physics, M.A. Wahab, 2011, Narosa Publishing House, ND
REFERENCE BOOKS	 PuriandBabber – Solid State Physics – S.ChandandCo. New Delhi. Kittel - Introduction to solid state physics, Wiley and Sons, 7th edition. Raghavan - Materials science and Engineering, PHI Azaroff - Introduction to solids, TMH S. O. Pillai - Solid State Physics, Narosa publication A.J. Dekker - Solid State Physics, McMillan India Ltd. Elements of Solid State Physics, J.P. Srivastava, 2nd Edition, 2006, Prentice-Hall of India
WEB RESOURCES	 <u>https://nptel.ac.in/courses/115105099/</u> <u>https://nptel.ac.in/courses/115106061/</u>

COURSE OUTCOMES:

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
	Classify the bonding and crystal structure also learn about the crystal structure analysis using X ray diffraction.	K2 & K3	
COURSE	CO2	Understand the lattice dynamics and thus learn the electrical and thermal properties of materials.	K1 &K2
OUTCOMES	CO3	Give reason for classifying magnetic material on the basis of their behaviour.	К3
	CO4	Comprehend the dielectric behavior of materials.	K3
	CO5	Appreciate the ferroelectric and super conducting properties of materials.	K2 & K3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point Scale of STRONG(S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S
CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	Μ	S	S	М	S	М	Μ	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	14	15	15
Weighted percentage of course contribution to POS	3.0	2.8	2.8	3.0	3.0

SIXTH SEMESTER - DIGITAL ELECTRONICS AND MICROPROCESSOR 8085

COURSE	SIXTH SEMESTER- CORE PAPER XIV (Theory)									
COURSE TITLE	DIGITAL ELECTRONICS AND MICROPROCESSOR 8085									
CREDITS 3	Hours 5	CIA 25	CE 75							
COURSE OBJECTIVES	digital circuits for a counters. To get the	umber systems, Boolean ddition and subtraction he knowledge on fu n sets and simple progra	, flip-flops, registers, ndamentals of 8085							

UNITS	COURSE DETAILS
UNIT-I	decimal, binary, octal, hexadecimal numbers systems and their conversions – codes: BCD, gray and excess-3 codes –code conversions –complements (1's, 2's, 9's and 10's) –binary addition, binary subtraction using 1's and 2's complement methods – Boolean laws – De-Morgan's theorem –basic logic gates -universal logic gates (NAND and NOR) –standard representation of logic functions (SOP and POS) – minimization techniques (Karnaughmap: 2, 3, 4 variables).
UNIT-II	adders, half and full adder – subtractors, half and full subtractor – parallel binary adder – magnitude comparator – multiplexers (4:1) and demultiplexers (1:4), encoder (8-line-to-3- line) and decoder (3- line-to-8-line), BCD to seven segment decoder.
UNIT-III	 flip-flops: S-R Flip-flop, J-K Flip-flop, T and D type flip-flops, master-slave flip-flop, truth tables, registers:- synchronousmod-8, mod-10, 4-bit and ring counter – general memory operations, ROM, RAM (static and dynamic), PROM, EPROM, EEPROM, EAROM. IC – logic families: RTL, DTL, TTL logic, CMOS NAND and NOR Gates, CMOS Inverter.
UNIT-IV	8085 Microprocessor: introduction to microprocessor – INTEL 8085 architecture – register organization –pin configuration of 8085, interrupts and its priority – Program Status Word (PSW) –instruction set of 8085 –addressing modes of 8085 –assembly language programming using 8085 – programes for addition (8-Bit and 16- Bit), subtraction (8-Bit and 16-Bit), multiplication (8- Bit), division (8- Bit) –BCD to ASCII and ASCII to BCD.

	I/O Interfaces: serial communication interface (8251-USART) -						
	programmable peripheral interface (8255-PPI) –programmable						
UNIT-V	interval timers (8253) – keyboard and display (8279), DMA						
	controller (8237).						
UNIT-VI	PROFESSIONAL COMPONENTS: expert lectures –seminars —						
	webinars – industry inputs – social accountability – patriotism						
	1. M. Morris Mano, "Digital Design "3rd Edition, PHI, NewDelhi.						
	2. Ronald J. Tocci. "Digital Systems-Principles and Applications"						
	6/e. PHI. New Delhi. 1999.(UNITS I to IV)						
	3. S. Salivahana and S. Arivazhagan- Digital circuits and design						
TEXT BOOKS	4. Microprocessor Architecture, Programming and Applications with						
	the 8085 – Penram International Publishing, Mumbai Ramesh						
	S.Gaonakar						
	5. Microcomputer Systems the 8086/8088 family - YU-Cheng Liu						
	and GlenSA						
	1. Herbert Taub and Donald Schilling. "Digital Integrated						
	Electronics". McGraw Hill. 1985.						
	2. S.K. Bose. "Digital Systems". 2/e. New Age International.1992.						
DEFEDENCE	3. D.K. Anvekar and B.S. Sonade. "Electronic Data Converters:						
REFERENCE	Fundamentals and Applications". TMH.1994.						
BOOKS	4. Malvino and Leach. "Digital Principles and Applications". TMG						
	Hill Edition						
	5. Microprocessors and Interfacing – Douglas V. Hall						
	6. Microprocessor and Digital Systems – Douglas V. Hall						
WEB	1. <u>https://youtu.be/-paFaxtTCkI</u>						
RESOURCES	2. https://youtu.be/s1DSZEaCX_g						

COURSE OUTCOMES:

At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
	CO1	Learn about number systems, Boolean algebra, logical operation and logic gates	K2 &K3
COURSE	CO2	Understand the working of adder, subractors, multiplexers and demultiplexers.	K1& K2
OUTCOMES	CO3	Get knowledge on flip-flops and storage devices.	K2
	CO4	Gain inputs on architecture of microprocessor 8085.	K2
	CO5	Develop program writing skills .on microprocessor 8085.	К3

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG(S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	S	S	S	М	S	S

CO2	М	S	М	S	М	М	S	М	М	М
CO3	S	М	S	М	S	М	М	S	S	S
CO4	S	S	S	S	М	S	S	М	М	М
CO5	S	М	М	S	S	М	S	М	М	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	2	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	15	15
Weighted percentage of course contribution to POS	3.0	3.0	2.8	3.0	3.0

Core Cou	ırse XVl	- Project					
Credits	3		Hours	4	CIA 25	CE 75	

Course Objectives :Students are provided with a core paper as Project (Individual project) other than theory and practical lectures, internships, field visits, assignments and seminars, the learners are put in the practice of doing subject specific projects either as theoretical work (calculations) or experimental / research level project works at the Under-Graduation level. Thus they are encouraged and motivated to pursue higher studies and research activities.

Methodology:

Every individual learner is encouraged to carry out a minor research work in the area related to the core subjects or Inter-disciplinary courses.

The project work must retain its originality and avoidance of plagiarism is mandatory

Evaluation Pattern:

After completion of eighty percent of the working days in the concerned semester, the candidate has to submit the research/ project work to the Examination section of the institution for evaluation.

The final product of the research work must be duly signed by the candidate, the Research Supervisor and the Head f the Department

The Examination section of the institution will fix a date for Viva-voce examination. Each individual has to appear for the Viva-voce.

Thrust areas for Project: (either theoretical or experimental work)

- Optics Using optical instruments
- Properties of matter Viscosity, elasticity & surface tension
- Electricity and electromagnetism
- Atomic and nuclear Physics
- Condensed matter Physics

- Electronics
- Digital electronics
- Communication Physics
- Nano science and technology
- Crystallography.

COURSE OUTCOMES: At the end of the course, the student will be able to:

СО		Statements	Bloom's Taxonomy level
	CO1	Learn to be specific in the (her) area of interest	K2 &K3
	CO2	Understand the method of working highly coherent to the topic.	K1& K2
COURSE OUTCOMES	CO3	Gain knowledge on the collection of voluminous data.	K2
OUTCOMES	CO4	Able to analyze the problems arising in doing the project	K2
	CO5	Able to solve, criticize and evaluate the results of the project	К3

MAPPING OF COURSE OUTCOME WITH POS:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	Μ	S	S	S	S	S	S
CO2	S	S	S	S	S	S	S	S	S	М
CO3	S	Μ	М	S	М	Μ	S	М	Μ	S
CO4	S	S	S	S	S	S	S	S	S	S
CO5	S	S	S	S	М	S	S	S	S	S
	S	S- Stron	g	M-Mee	dium	L-L	ow			

K1 - Remembering K2-Understanding

K3-Applying

MAPPING OF COURSE OUTCOME WITH POS:

CO\PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	14	15	15

Weighted					
percentage of					
course	3	3	2.8	3	3
contributin to					
POS					

EC 3 Option 1 - ENERGY PHYSICS

ELECTIVE CO	URSE III ENERGY PH	YSICS	
Credits 3	Hours 5	CIA 25	CE 75
Learning Object	tive: To get the under	rstanding of the con	ventional and non-
	gy sources, their conservat	ion and storage systems	S.
UNITS	COURSE DETAILS		
UNIT-I	INTRODUCTION TO as a measure of prosper and their availability conventional and renewa and demerits.	ity – world energy fut – conventional energ able energy sources –	ure – energy sources gy sources – non- comparison – merits
UNIT-II	SOLAR ENERGY: solar radiation at the Ea Solar radiation measurer storage and storage syste heater – solar greenhouse	arth's surface – solar 1 ments – solar radiation ms – solar pond – solar	adiation geometry – n data –solar energy cooker – solar water
UNIT-III	WIND ENERGY: introd of wind energy conversion – basic components of W advantages and disadvant	duction –nature of the v on – wind energy data a /ind Energy Conversion ages of WECS – applic	vind – basic principle nd energy estimation n Systems (WECS) – ations – tidal energy
UNIT-IV	BIOMASS ENERGY: conversion technologies generation –classification biogas – wood gasification	-photosynthesis – fe of biogas plants – an	rmentation - biogas aerobic digestion for
UNIT-V	ENERGY STORAGE: lead acid battery -nickel- cells – advantages and d fuel cells - hydrogen stor	importance of energy cadmium battery – fuel lisadvantages of fuel co	storage- batteries - l cells – types of fuel
TEXT BOOKS	 G.D.Rai, Non-Conv Publishers, 2009, 4thE S P Sukhstme, J K N Collection and Storag D P Kothari, K P Si 2011, 2ndEdn. 	dn. Nayak, Solar Energy, P e, McGraw Hill, 2008, 3	Principles of Thermal 3 rd Edn.
REFERENCE BOOKS	 John Twidelland To Taylor and Francis, 20 S.A. Abbasi and Nas 	005, 2 nd Edn. emaAbbasi, Renewable npact, PHI Learning Pvi	Energy sources and t. Ltd, 2008.

4.	H.	C.	Jain,	Non-Conventional	Sources	of	Energy,	Sterling
	Put	olish	ers,198	86.				

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO	Statements	Bloom's Taxonomy level
CO1	To identify various forms of renewable and non-renewable energy sources	K1
CO2	Understand the components of solar radiation, their measurement and apply them to utilize solar energy.	K2
CO3	Discuss the working of a windmill and analyze the advantages of wind energy.	К3
CO4	Distinguish aerobic digestion process from anaerobic digestion.	K4
CO5	Understand the importance of energy storage, advantages and disadvantages and applications of fuel cells and hydrogen storage	К3

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) and program specific outcomes (PSO) in the 3-point scale of STRONG (3), MEDIUM (2) and LOW (1).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	S	S	S	М	S	S	S	S
CO2	S	S	S	S	S	М	S	S	S	S
CO3	М	S	S	S	S	S	S	S	S	S
CO4	М	S	S	М	S	S	S	S	S	М
CO5	S	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3

Weightage	15	14	15	15	15
Weighted percentage of course contribution to Pos	3	2.8	3	3	3

Ec 3 Option 2 - MEDICAL INSTRUMENTATION

ELECTIVE CO	DURSE III MEDICAL INSTRUMENTATION
Credits - 3	
	ctive: This course aims to provide background of the Physics principles in
medical instrume	entation technologies through theoretical and practical learning.
UNITS	COURSE DETAILS
UNIT-I	BIOMETRICS: introduction to man-instrument system and its components – problems encountered in measuring living systems – transducers– force, motion, pressure transducers. AUDIOMETRY: mechanism of hearing – air and bone conduction – threshold of hearing – audiometer – masking in audiometry – pure tone and speech audiometer – evoked response audiometry – hearing aids
UNIT-II	 BIOELECTRIC POTENTIALS AND ELECTRODES: biomedical signals – sources of bioelectric potentials – resting, action and propagation of bioelectric potentials –bio-potential electrodes – skin surface, needle electrodes. BIOMEDICAL RECORDERS: electro-conduction system of heart – electro cardiogram (ECG) – Einthoven's triangle — electro encephalogram (EEG) –brain waves – EEG instrumentation – recording of evoked potentials – electro myogram (EMG)–pulse oximeter.
	DIAGNOSTIC RADIOLOGY: radiography – primary radiological image
UNIT-III	 - contrast agents, filters – beam restrictor, grid – image quality COMPUTED TOMOGRAPHY: linear tomography – computed tomography – helical and multi slice – image quality– radiation dose. RADIOISOTOPES AND NUCLEAR MEDICINE: radioisotopes – radiopharmaceuticals – technetium generator – gamma camera – positron emission tomography – disposal of radioactive waste.
UNIT-IV	ULTRASOUND IMAGING: ultrasound transducer – ultrasound imaging– Doppler ultrasound – ultrasound image quality and bio-effects. MAGNETIC RESONANCE IMAGING: proton and external magnetic field – precession – radiofrequency and resonance – MRI signal – relaxation time – MRI instrumentation – imaging sequences – biosafety
UNIT-V	PROJECT ASSIGNMENT: clinical practice of <i>one</i> of the following: electro cardiogram, electro encephalogram, electro myogram, electro oculogram, computed tomography, positron emission tomography, ultrasound
TEXT BOOKS	 Leslie Cromwell, Fred Weibell, Erich Pfieffer (2002) Biomedical Instrumentation and Measurements Prentice Hall of India, New Delhi. R. S. Khandpur (2003) Handbook of Biomedical Instrumentation 2ndEdn. Tata McGraw Hill, New Delhi. KuppusamyThayalan (2017), Basic Radiological Physics 2ndEdn. Jaypee Brothers Medical Publishers (P) Ltd, New Delhi.
REFERENCE BOOKS	1. John Webster (2004) Bioinstrumentation John Wiley and Sons, Singapore.

2.	. John Enderle, Susan Blanchard, Joseph Bronzino (2005) Introduction to
	Biomedical Engineering, 2 nd ed. Elsevier, San Deigo
3.	. William Hendee, Geoffrey Ibbott, Eric Hendee (2005) Radiation therapy
	Physics 3 rd ed. Wiley-Liss, New Jersey

COURSE OUTCOMES:

At the end of the course, the student will be able to:

COs	Statements	Bloom's Taxonomy level
CO1	Learn the fundamentals and applications of Biometrics and Audio metry.	K1
	Understand the basics of bioelectric potentials and electrodes. Learn about ECE, EEG, EMG and basic principles of pulse oximeter.	K2
CO3	Apply knowledge on Radiation Physics	K3
CO4	Analyze Radiological imaging and filters	K4
CO5	Assess the principles of radiation protection	K5

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	S	S	S	S	S	S	S	S	S	S
CO2	М	S	S	S	М	S	S	S	S	М
CO3	S	S	S	S	S	М	S	S	М	S
CO4	S	S	S	S	S	S	S	М	S	S
CO5	М	S	S	S	S	S	S	S	S	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	2	3
CO3	3	3	3	3	3
CO4	3	2	3	3	3
CO5	3	3	3	3	3
Weightage	15	14	15	14	15
Weighted percentage of course contribution to Pos	3	2.8	3	2.8	3

EC4 – Option 1 - MATERIALS SCIENCE

	ELECTIVE COURSE IV - MATERIALS SCIENCE								
Credits	3	Hours	5	CIA	25	CE 75			
Learning Obje	ctive: To lea	rn imperfec	tions in	crystals	, deformatio	n of materials and			
e	•	•				r the action of light			
and their applica	tions. To kno	w the applic							
UNITS			COUR						
UNIT-I	vacancies (equilibrium application screw disloc grain bound	CRYSTAL IMPERFECTIONS: introduction – point defects: vacancies (<i>problems</i>), interstitials, impurities, electronic defects – equilibrium concentration of point imperfections (<i>problems</i>)– application of point defects –line defects: edge dislocation (<i>problems</i>), screw dislocation – surface defects: extrinsic defects – intrinsic defects: grain boundaries, tilt and twist boundaries, twin boundaries, stacking faults – volume defects – effect of imperfections.							
UNIT-II	MATERIA materials – in design – relaxation p pot models of	L DEFOR atomic mod rubber lik process – vi of viscoelas	MATIO del of ela e elastici scoelastici tic behav	N: intro stic beh ty – ino c behav ior of m	oduction – e aavior –modu elastic behav ior of mater aterials.	elastic behavior of ilus as a parameter vior of materials – tials – spring-Dash			
UNIT-III	tensile strea mechanism	SOFMA ss-strain cu of creep strain harc	TERIAL 1rve – p – creep lening,	S: intro blastic resista grain	oduction –pl deformation ant material refinement	RENGTHENING lastic deformation: by slip – creep: s – strengthening – solid solution			
UNIT-IV	OPTICAL semiconduc display d phosphoresc	MATERIA tors and ins evices ar cence – ligh	LS: intro ulators – d disp t emitting	oduction NLO m lay n diodes	n – optical at naterials and naterials: f –liquid cryst	osorption in metals, their applications – fluorescence and tal displays.			
UNIT-V	compressior radiographic thermograph	n test, har c methods, ny – equipm	dness te ultrasonio ent used	est – r c metho for ND	ds – thermal F: metallurgi	re testing (NDT): methods of NDT: cal microscope			
TEXT BOOKS	2. Materials	th Edition, 2 science, V.	2015 Rajendrai	n, McGr	aw Hill publi	cations 2011			
REFERENCE BOOKS	Introducti 2. W. Bolt Butterwor 3. Donald R of Materi 2007. 8. William J	on, 8th Edit on, "Engin th and Hein . Askeland, als", 5th E	ion, John neering emann, 20 Pradeep dition, T Structure	Wiley a materia 201. P. Phule homson and Pro	nd Sons, Inc., ls technolog e, "The Scien Learning, F operties of E				

COURSE OUTCOMES:

On completion of the Course the student will be able to,

СО	Statement	Blooms Taxonomy level
CO1	Learn the imperfections in the crystals	K2
CO2	Learn the different kinds of mechanical behavior of materials	K2 & K3
CO3	Understand the knowledge of deformation and strengthening methods of materials	К2
CO4	Study the behavior of optical materials and their applications, function of optical devices like LED, LCD	К2
CO5	Apply the various destructive and non destructive methods of testing of materials.	К3

K1 - Remembering K2-Understanding K3-Applying

Mapping of Course Outcome with POs:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	Μ	Μ	S	S	S	S	Μ	М	S	М
CO2	Μ	Μ	Μ	Μ	S	S	Μ	М	М	М
CO3	Μ	S	S	S	М	S	S	М	S	S
CO4	Μ	S	S	S	М	S	S	S	S	S
CO5	Μ	Μ	S	S	S	S	S	S	S	S

S- Strong M-Medium L-Low K1 - Remembering K2-Understanding K3-Applying

Mapping of Q	<u>Mapping of Course Outcome with POs:</u>						
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	3	3	3	2	3		
CO2	3	3	3	3	3		
CO3	3	3	3	3	3		
CO4	3	3	3	3	3		
CO5	3	3	3	3	3		
Weightage	15	15	15	14	15		
Weighted percentage	3	3	3	2.8	3		

Mapping of Course Outcome with POs:

of course			
contributin			
to POS			

S- Strong	M-Medium	L-Low
K1 - Remembering	K2-Understanding	K3-Applying

EC 4 Option 2 - ADVANCED MATHEMATICAL PHYSICS

ELE	CTIVE (COURSE IV -A	DVAN	CED MATHEMA	TICAL PHYSICS					
Credits	3	Hours	5	CIA 25	CE 75					
Learning C	Objective	The fundamen	ntals of 1	natrices and vector	r calculus learnt in earlier					
	course will enable students to learn advanced topics and theorems. The special functions									
	and applications of partial differential equations will be of use in research at a later stage.									
UNITS		COURSE DETAILS								
					of matrices - transpose -					
					ic and anti symmetric –					
UNIT-I	ł				al and unitary – properties					
	-				characteristic vectors –					
				-Hamilton theorem						
					gence – second derivative					
					erator – curl of a vector –					
UNIT-II					ld around an infinitesimal urface integral – volume					
		•			gence theorem and proof –					
		•	.	oof –simple probler	· · · ·					
		SPECIAL FUNCTIONS: definition –Beta function – Gamma function – evaluation of Beta function – other forms of Beta function								
UNIT-III		– evaluation of Gamma function – other forms of Gamma function –								
		relation between Beta and Gamma functions – simple problems.								
					FUNCTIONS: singular					
					juations and importance –					
					ations, Frobenius method					
UNIT-IV					: Legendre and Hermite					
	Ċ	lifferential equ	ations -	- Legendre and	Hermite polynomials -					
				erating function – o						
					DNS: solutions to partial					
				0 1	of variables - Laplace's					
UNIT-V					cylindrical and spherical					
					ere in an external uniform					
		electric field – wave equation and its solution for vibrational mo								
		of a stretched string1. Mathematical Physics, B.D. Gupta-Vikas Publishing House, 4								
			•	s, B.D. Gupta-Vika	as Publishing House, 4 th					
TEXT BO		Edition (2006) 2. Mathematical Physics, SatyaPrakash (Sultan Chand)								
		1. Mathematica	•	s, Salyariakash (Su	Methodsor					
REFEREN				n,H.J.Weber,F.E.H						
BOOKS		Elsevier)		u,11.J. W COCI,1 ⁻ .12.11	uiiio (2013, 711 Edill.,					
			1 Physic	s–H. K. Dass. Dr	Rama Verma (S. Chand					
L				Dubb, DI.						

Publishing)
3. Advanced Engineering Mathematics, Erwin Kreyszig (Wiley
India)
4. Mathematical Physics and Special Relativity, M. Das, P.K. Jena
and B.K. Dash (SrikrishnaPrakashan)

COURSE OUTCOMES:

On completion of the Course the student will be able to,

CO	Statement	Blooms Taxonomy level
CO1	Learn the learn advanced topics and theorems in mathematics based on the fundamentals of matrices and vector calculus learnt in earlier course	K1 & K2
CO2	Acquire the advanced knowledge in vector calculus and apply them in real time cases	K2 & K3
CO3	Understand the various special functions	K1 & K2
CO4	Apply the special functions in different problems	К3
CO5	Apply the knowledge of partial differential equations for different geometrical objects which will be of use in research at a later stage	К3
	K1 - Remembering K2-Understanding K3-A	pplying

Mapping of Course Outcome with POs:

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	S	S	S	S	S	S	S	М
CO2	S	S	Μ	Μ	S	S	Μ	М	Μ	S
CO3	Μ	S	S	S	М	S	S	М	S	S
CO4	S	S	S	S	S	S	S	S	S	М
CO5	S	Μ	S	S	S	S	S	S	S	S

S- Strong M-Medium L-Low K1 - Remembering K2-Understanding K3-Applying

Mapping of	Mapping of Course Outcome with POs:										
CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	3	3	3	3						
CO2	3	3	3	3	3						
CO3	3	3	2	3	3						
CO4	3	3	3	3	3						
CO5	3	3	3	3	3						
Weightage	15	15	14	15	15						

Weighted					
percentage of					
course	3	3	3	3	3
contributin to					
POS					

S- Strong M-Medium L-Low K1 - Remembering K2-Understanding K3-Applying

SIXTH SEMESTER - CORE PRACTICAL- 6

COURSE	SIXTH S		ER – (CORE	PAP	ER XV -	(PRACT	ICAL)
COURSE TITLE	PRACTI	CAL 6						
CREDITS - 3	Hours	- 3	4	CIA	25		CE 75	
COURSE	To perfor	n basic e	experir	nents o	n cha	racteristic	es of electr	ronic devices
OBJECTIVES								, oscillators
- • •		•		* *			.	eriments or
	microproc							
Electronics						F - 0		
Minimum of Ten	Experime	nts from	the li	st:				
1. Zener diode –								
2. Bride rectifier								
3. Clipping and			ng dioo	des.				
4. Characteristic								
5. Characteristic								
6. RC coupled C) .			
7. Transistor En			L L	0				
8. Colpitt's oscil	lator -transi	stor.						
9. Hartley oscill								
10. Astable multi								
11. Bistable multi	vibrator - tr	ansistor.						
12. FET - charact	eristics.							
13. FET - amplifi	er (commor	drain)						
14. UJT -characte								
15. AC circuits w	ith L.C.R -S	Series res	onance					
16. AC circuits w	ith L.C.R -	Parallel r	esonan	ice.				
17. Operational a	mplifier - in	verting a	mplifie	er and su	ummi	ng.		
18. Operational a	-	•	-			•		
19. Operational a						U		
20. Operational a	-		-		tor.			
21. Operational a						or method	•	
22. 5V, IC Regula								
23. Construction	-	· · ·	play.					
24. Study of gate				R, NAN	ND, X	OR, XNC)R	
25. Verification o								
26. NAND as uni	versal build	ing block		C				
27. NOR as unive								
28. Half adder / H	Ialf subtract	or using l	basic lo	ogic gat	e ICs			
29. Microprocess	or 8085 – ad	ldition (8	bit on	ly)				
30. Microprocess								
31. Microprocess					·)			
32. Microprocess								
33. Microprocess								
34. Microprocess								
35. Microprocess					ers (8	bit only)		
36. Microprocess		-				• /		
37. Microprocess				0				

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO	Statement	Blooms Taxonomy level
CO1	Acquire practical skills in using electronic devices.	K2
CO2	Provide a hands-on learning in digital electronic circuits	К3
CO3	Apply the knowledge to make various circuits in digital electronics using ICs.	К3
CO4	Gain adequate knowledge about fundamental experiments on microprocessor 8085.	К3
CO5	Apply the knowledge to write programs by themselves.	К3

K1 - Remembering K2-Understanding K3-Applying

MAPPING WITH PROGRAM OUT COMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	S	S	М	S	М	S	М	S
CO2	S	S	S	М	S	М	S	S	S	S
CO3	Μ	М	Μ	S	М	М	S	М	М	М
CO4	Μ	S	М	S	S	S	М	М	S	S
CO5	S	М	S	М	S	М	М	S	М	S

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of course contributin to POS	3	3	3	3	3

COURSE	SIXTH SEM	SIXTH SEMESTER – SKILL ENHANCEMENT COURSE VIII								
COURSE TITLE	COMPUTE	COMPUTER PROGRAMMING 'C' PRACTICALS								
CREDITS - 2	Hours - 2 CIA 25 CE 75									
COURSE OBJECTIVES	function. To	To write C program for simple applications of real life using using function. To make the students to write C programs using conical statements. To train the students to write C programs using Arrays								

List of Programmes :

- 1. Arranging data in ascending / descending order.
- 2. Finding area of a triangle.
- 3. Finding standard deviation of a collection of data.
- 4. Fahrenheit to Celsius conversion.
- 5. Upper and lowercase conversion.
- 6. Sum of the digits.
- 7. Sum of the given series. Sum = $x+x^2+x^3+...+x^{15}$.
- 8. Reversing the numbers.
- 9. Reversing the string.
- 10. Compound interest calculation.
- 11. Simple interest calculation using function.
- 12. Factorial of a number.

Course Outcome :

On completion of the Course the student will be able to,

СО	Statement	Blooms Taxonomy level
CO1	write simple programme in 'C'	K2
CO2	use control statements and simple if else statements in writing programmes	К3
CO3	write programs using switch case	К3
CO4	write programe using for loop	К3
CO5	write programe using functions	К3

K1 - Remembering

K2-Understanding

K3-Applying

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) in the 3-point scale of STRONG (**S**), MEDIUM (**M**) and LOW (**L**).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	Μ	М	S	Μ	Μ	S	S	Μ	S
CO2	S	М	S	S	S	S	S	М	S	М
CO3	S	М	S	S	М	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	S	S	М	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	2	3	3
CO5	3	2	3	3	3
WEITAGE	15	13	14	15	15
Weighted percentage of course contribution to POS	3.0	2.6	2.8	3.0	3.0

COURSE	SIXTHE S	SIXTHE SEMESTER - Part IV						
COURSE TITLE	EXTENSIO	EXTENSION ACTIVITY						
CREDITS - 1	Hours	Hours NIL CIA 25 CE 75						
COURSE OBJECTIVES	To make the skills to soc			en practice their knowledge and				

CO1.	To arouse social consciousness of the students by providing them	Knowledge (Level
	opportunities to work with and among	K1)
	the people.	
	To develop an awareness and knowledge of social realities to have concern for the well being of the	Application (Level K3)
	community and engage in creative and constructive social action.	
CO3.	To provide with rich and meaningful educational experiences to	Synthesis (Level
	them in order to make their education	K6)
	complete and meaningful.	
CO4.	To develop skill needed in the exercise of democratic leadership and	Synthesis (Level
	programme development to help them	K6)
	get self-employed.	
CO5.	To give them the opportunities for their personality development	Synthesis (Level
		K6)

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (**CO**) for each course with program outcomes (**PO**) in the 3-point scale of STRONG (**S**), MEDIUM (**M**) and LOW (**L**).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	М	М	S	S	М	S
CO2	S	S	S	S	S	S	S	М	S	М
CO3	S	М	S	S	М	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	S	S	М	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	2	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	14	15	15
Weighted percentage	3.0	2.8	2.8	3.0	3.0
of course contribution					
to POS					

Semester I – Extra Credit Course I ENERGY HARVESTING - I

<u>COURSE OBJECTIVES</u>: To make the students understand the basic principles and applications of different forms of energy.

UNITS AND COURSE DETAILS UNIT-I ELECTRICAL ENERGY

Application of heating effect of electricity: Electric heater– Electric radiation and Electric Iron – Electric welding and electric furnace –Carbon arc – Electric Lamp – Efficiency of a Lamp – Measurement of Electric Power - Principle of production of A.C. – A.C generators – D.C generators -D.C Motors.

UNIT – II MAGNETIC ENERGY

Magnetic field (B), magnetization (M), magnetic field intensity H, Magnetic flux and flux density, magnetic materials and magnetization, Induction heater-magnetic hysteresis.

UNIT- III PHOTOVOLTAICS & MICROWAVES

The photovoltaic effect -analysis of photovoltaic cells-efficiency of solar cells-design of photovoltaic system-single crystal and polycrystalline cells-Reflex Klystron- Magnetron -Microwave oven.

UNIT - IV THERMAL ENERGY

Distribution of Energy in the thermal spectrum – Lummer and Pringsheim Experiment and its Results – Wien's Displacement Law and Radiation Law – Rayleigh Jean's Law -Planck's Radiation Law – Deduction of Wien's Law and Rayleigh – Jean's Law from Planck's law-Kirchoff's Law of radiation and its proof.

UNIT - V MOLECULAR ENERGY & NUCLEAR ENERGY

Maxwell's law of equipartition of Energy – Molar Specific heat capacity at constant volume and constant pressure – Total Internal Energy and Ratio of Heat capacities in monoatomic gas, Diatomic gas. Chain reaction-Controlled & uncontrolled Nuclear fission, energy released in atom bomb. Nuclear fusion-Thermo nuclear reactors- Hydrogen bomb.

BOOKS FOR STUDY:

- 1. Heat & Thermodynamics Units I, &II Brijlal Subramaniam, Heat & Thermodynamics, Heat & Thermodynamics, Units I, & II, 2012, 16th edition.
- 2. Dennis Roddy &John Coolen, Electronic Communication, (Unit III), Prentice Hall India, 1995, 4th Edition.
- 3. Subir Kumar Sarkar, Optical Fibre and Fibre optic communication systems (Unit III) S Chand & Co, 2001, 2nd edition.

- 4. Singhal.S.S, Agarwal. J.P. and Sathya prakash, Heat, Thermodynamics and Statistical Physics, Units I, &II, Pragati Prakashan, 1985, 9th Edition.
- 5. Subrahmaniam. N & Brijlal S, Atomic & Nuclear Physics, Unit V, Chand & Company Ltd, 2008, 3rd Edition

Understand how electrical energy can be used in day today appliances. Acquire knowledge of the Ac currents and generators	Understand (Level K1) & Knowledge (Level K2)
Develop an awareness and knowledge of magnetic fields, flux and other magnetic vectors.	Application (Level K3)
Provide with useful educational experiences to them in the concept of photovoltaic effects.	Knowledge (Level K2) Analyze (Level K4)
Understand and appreciate the use of thermal energy and to develop skill needed in using it.	Application (Level K3)
Give them the opportunities to study the concepts nuclear energy and energy generation.	Analyze (Level K4)

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	М	М	S	S	М	S
CO2	S	S	S	S	S	S	S	М	S	М
CO3	S	М	S	S	М	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	S	S	М	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	2	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	14	15	15
Weighted percentage	3.0	2.8	2.8	3.0	3.0
of course contribution					
to POS					

Semester III – Extra Credit Course II

Electrical Appliances

Objective: To enable the students to apply the principles of Physics in electrical appliances.

UNITS AND COURSE DETAILS

UNIT I

- 1. Electric oven
- 2. Washing machine

UNIT II

- 1. Refrigerators
- 2. Air conditioner general principles and working

UNIT III

- 1. Electrical bell
- 2. Room heater

UNIT IV

- 1. Induction stove
- 2. Lightning conductor

UNIT V

Introduction - Wiring Materals and accessories - types of wiring

- Basic principles of earthing - types of earthing

BOOKS FOR STUDY

- 1. Instrumentation K.Arumugam
- 2. Electricity and magnetism R.murugesan
- 3. How things work -the universal encyclopedia of mechines.

	Understand (Level K1) & K2 Knowledge
Acquire the knowledge of working of Refrigerators and Air conditioner.	Application (Level K3)
Provide with useful educational experiences to understand the of the basic idea of Electrical bell and Room heater.	Analyze (Level K4)
	Application (Level K3)
Get the opportunities to study the concepts Induction stove and Lightning conductor	Analyze (Level K4)

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	S	М	S	S	М	S	S	S	S
CO2	S	S	S	S	S	S	S	М	S	S
CO3	S	М	S	S	М	S	S	S	М	S
CO4	М	S	М	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	S	S	S	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	2	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
WEITAGE	15	14	15	15	15
Weighted percentage of course contribution	3.0	2.8	3.0	3.0	3.0
to POS					

Semester - V Extra Credit Course III ENERGY HARVESTING - II

Objective: This Course aims to introduce the different nonconventional energy sources and the methods of harnessing energy from them.

UNITS AND COURSE DETAILS

UNIT I SOLAR ENERGY

Solar radiation – Solar radiation outside the earth's atmosphere Solar radiation at the earth's surface – Solar Thermal Energy – Solar Thermal devices and systems: Solar water heater – Sub components of solar water heater – Solar Cooker and its merits and demerits.

UNIT II WIND ENERGY

Power in the wind – Types of wind energy systems –Horizontal axis wind Turbine – Vertical axis wind Turbine.

UNIT III OCEAN ENERGY

Tidal Energy – Ocean Thermal Energy Conversion (OTEC) – Closed Cycle OTEC system – Open Cycle OTEC System.

UNIT IV ENERGY FROM BIOMASS

Biomass feedstock-water material-energy crops-important properties of biomassconversion of biomass to gaseous fuels-anaerobic digestion-thermal gasification.

UNIT V GEOTHERMAL ENERGY

Introduction- Estimates of Geothermal power – Nature of Geothermal fields – Geothermal sources – Advantages and Disadvantages of geothermal energy - Applications of geothermal energy.

BOOKS FOR STUDY

- 1. Sukhatme S.P, Solar Energy, (Unit I), Wiley publications, 1975, 1st edition.
- Rai. G.D, Non Conventional Sources of Energy, Khanna Publishers, 2009, 1st edition.
- 3. Rai. G.D, Non Conventional Sources of Energy, Khanna Publishers, 1987, 1st edition.
- 4. Yogi.D Goswami, Frank Krieth and Jan F. Krelder, Principles of Solar Engineering (Units IV & V), Tailor & Francis, 2003, 1st edition.

CO1.	Acquire knowledge of the working different thermal devices	Understand (Level
	Understand how solar energy can be used in day today appliances	K1) & Knowledge
		K2
CO2.	Get the concept of power in the wind types of wind energy systems	Understand (Level
	horizontal axis wind Turbine – Vertical axis wind Turbine.	K1) & Knowledge
		K2
CO3.	Provide with useful educational experiences to them in the concept of	Analyze (Level K4)
	Tidal Energy, Ocean Thermal Energy Conversion.	
CO4.	Appreciate the use of Energy from Biomass.	Analyze (Level K4)
~ ~ ~		
	Able to estimates of Geothermal power understand the nature of	Analyze (Level K4)
	Geothermal fields and Geothermal sources.	Application (Level
		K3)

MAPPING WITH PROGRAM OUTCOMES:

Map course outcomes (CO) for each course with program outcomes (PO) in the 3-point scale of STRONG (S), MEDIUM (M) and LOW (L).

CO/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	S	М	М	S	М	М	S	S	М	S
CO2	S	S	S	S	S	S	S	М	S	М
CO3	S	М	S	S	М	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	S	S	S	S	S	S	М	М

CO/PSO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	2	3	3
CO5	3	3	3	3	3
WEITAGE	15	15	14	15	15
Weighted percentage of course contribution to POS	3.0	3.0	2.8	3.0	3.0

VALUE ADDED COURSES

Programme: UG
Course Type: Value Added Course - I
Training

Sem: II Course: Laboratory Equipment

Contact Hours: 30 Hours

CIA: 100

Course Objectives:

- To understand basic concepts of measuring instruments.
- To discuss the working principles of electrical and electronic instruments.
- To give the basic principles of power supplies.
- To discuss the theory, types and uses of transformers.
- To give the basic concepts of oscillators.

Course Outcome:

On completion of the Course the student will be able to,

S.No	Description	Blooms' Taxonomy
		Level
COI	Gaining knowledge of the basic concepts of measurement	K2
	of physical quantities.	
CO2	Gaining knowledge of the basic principles of transformers	K2
CO3	Applying the principles of power supplies in various	К3
	circuits.	
CO4	Designing and analyzing electrical and electronic	K4
	instruments	
CO5	Analyzing the frequency responses in various circuits	K4
	using oscillators	

K2-Understanding

K3-Applying

K4-Analysing

COURSE CONTENT

UNIT – I: MEASURING INSTRUMENTS

Vernier Calipers –Least Count – Zero Error and Zero correction –Positive & Negative Zero Errors - Screw Gauge –Least Count – Zero Error and Zero correction - Travelling Microscope – Design & Working - Telescope – Design & Working - Spectrometer – Design & Working – Initial Adjustments.

UNIT – II: ELECTRICAL & ELECTRONIC INSTRUMENTS

DC Ammeter – DC Voltmeter – AC Voltmeter- AC Ammeter – Multimeters: Analog and Digital – Digital Frequency Meter – Galvanometers: Table & Spot Reflecting Galvanometer .

UNIT – III: POWER SUPPLY

Introduction – Regulated power supply – Three Terminal Regulated Power Supply – Fixed Positive Voltage Regulators - Fixed Negative Voltage Regulators – Adjustable Voltage regulators –Dual Power Supply.

UNIT – IV: TRANSFORMERS

Introduction – Step down transformers – Step up Transformers - Construction – Theory – Energy Losses – Uses.

UNIT – V: OSCILLATORS

Introduction – Basic Principles –Sine, Square and Triangular Wave Generator – Principle and working – Fixed Frequency Oscillator.

LIST OF EXPERIMENTS:

- Estimation of errors
- Young's modulus Scale & Telescope
- Young's modulus Microscope
- Calibration of low range voltmeter
- Calibration of ammeter
- Adder / Subtractor Op Amp
- Minimum Deviation Spectrometer
- Bridge Rectifier
- LCR circuit

BOOKS FOR REFERENCE:

- 1. J.Gnanavadivel, C.Senthil Kumar, P.Priyalatha, P.Manikandan, DR.C.Nagarajan. Measurements and Instrumentation. Anuradha Publications, Chennai.
- 2. Albert D.Helfrick, William D. Cooper, Modern Electronic Instrumentation and Measurement Techniques, Prentice Hall of India Pvt. Limited, New Delhi, 2004.
- 3. G.Senthil Kumar, "Physics Laboratory Manual".
- **4.** G. Jose Robin, A.Ubald Raj, Basic Electronics and Applied Electronics, Indira Publications.

Mapping of Course Outcome with POs:

СО	PO1	PO2	PO3	PO4	PO5	Blooms
						Taxonomy
						level
CO1	Н	Н	М	М	М	K2
CO2	Н	Н	Н	М	М	K2
CO3	Н	Н	Н	Н	Н	К3
CO4	Н	Н	М	Н	Н	K4
CO5	Н	Н	Н	Н	Н	K4

Laboratory Equipment Training

H-High M-Medium

n L-Low

K2-Understanding, K3-Applying K4 - Analysing

VALUE ADDED COURSES

Programme: UG Course Type: Value Added Course - II PCB

Course: Designing & Fabrication of

Contact Hours: 30 Hours	
Course Objectives:	

CIA: 100

Sem : IV

- To provide foundational knowledge of PCB, parts and materials used.
- To make the students acquire an understanding the types of PCB.
- To enable the student to explore the field of Layout and Artwork.
- To comprehend the principles of Lamination and Photoprinting.
- To help them understand the concept of Etching and Soldering.

COURSE CONTENT

UNIT – I: PRINTED CIRCUIT BOARD (PCB)

Introduction – Different parts of PCB-Pad-Trace-Layers-different types of Layer-PCB materials- classification according to reinforced materials and types of resin - PCB Material Properties

UNIT – II: TYPES OF PCB

Single sided, double sided, Multilayer - through holes technology- Benefits of Surface Mount Technology (SMT)- Limitation of SMT-Surface mount components: Resistors, Capacitor, Inductor, Diode and IC's.

UNIT – III: LAYOUT AND ARTWORK

Layout Planning: General rules of Layout, Resistance, Capacitance and Inductance, Conductor Spacing, Supply and Ground Conductors, Component Placing and mounting, Cooling requirement and package density, Layout check. Basic artwork approaches, Artwork taping guidelines-General artwork rules: Artwork check and Inspection.

UNIT – IV: LAMINATION AND PHOTO PRINTING

Properties of laminates, Types of Laminates, Manual cleaning process, Basic printing process for double sided PCB's, Photo resists, wet film resists, Coating process for wet film resists, Exposure and further process for wet film resists, Dry film resists.

UNIT – V: ETCHING AND SOLDERING

Introduction, Etching machine, Etchant system. Principles of Solder connection,

Solder joints, Solder alloys, Soldering fluxes. Soldering, Desoldering tools and Techniques.

BOOKS FOR REFERENCE:

- **1.** Robert Boylstead and Louis Nashelsky, Electronic Devices and Circuit Theory, IX Ed, 2013.
- 2. Paul B. Zbar, Electronics Text Lab Manual.
- 3. Joeseph Edminister, Electric Circuits, Schaum Series.
- **4.** N.N. Bhargava, D.C. Kulshresta and D.C Gupta, Basic Electronics and Linear Circuits, TMH.
- **5.** David A Bell, Electronic Devices, Reston Publishing Company/DB Tarapurwala Publ.
- **6.** Walter C.Bosshart, PCB Design and Technology, Tata McGraw Hill Publications, Delhi, 1983. Clyde F.Coombs, Printed circuits Handbook III Ed, McGraw Hill.

COURSE OUTCOME:

On completion of the Course the student will be able to,

S.No	Description	Blooms' Taxonomy
		Level
CO1	Gaining knowledge of the basics of PCB	K2
CO2	Comprehending the different types of PCB	K2
CO3	Applying the gained knowledge to develop Layout	K3
CO4	Applying the gained knowledge and developing Etching and Soldering	K4
CO5	Analyzing the concept of laminates and printing	K4
K2	-Understanding K3-Applying	K4-Analysing

Mapping of Course Outcome with POs:

1.100 p ping (40001110 111011				
CO	PO1	PO2	PO3	PO4	PO5	Blooms
						Taxonomy
						level
CO1	Н	М	Н	М	Н	K2
CO2	Н	Н	Н	М	Н	K2
CO3	М	Н	Н	Н	М	K3
CO4	Н	Н	Н	Н	Μ	K4
CO5	Н	Н	Н	Н	Н	K4
		H-High	M-Medi	um L-Lov	V	

K2-Understanding, K3-Applying K4 - Analysing

VALUE ADDED COURSE - III

Programme : UG

Sem : VI

Course Type: Value Added Course - III CIA : 100 **Course : Optoelectronic Devices Contact Hours: 30 Hours**

Course Objectives:

- To learn about the concepts of LEDs their working, advantages and Applications.
- To cover the concepts of LCDs their working, advantages and Applications.
- Understand the function of different semiconductor opto devices.
- To discuss the concept of different photo detecting devices.
- To learn about the working of CRO_and its applications.

COURSE CONTENT

UNIT- I - LIGHT-EMITTING DIODES - LED

Introduction – types of Light-emitting diodes – construction – working principle - I-V characteristics – different coloured LEDs – advantages – disadvantages - applications of LED.

UNIT – II - LIQUID CRYSTAL DISPLAY - LCD

Introduction – construction – working principle - types of liquid crystal display and their working - characteristics – advantages - disadvantages – applications of LCD.

UNIT-III - LIGHT DETECTING DEVICES I

Photodiodes - introduction – construction – principle of working – working modes - critical performance parameters of photodiodes – advantages – disadvantages - applications - phototransistors- introduction – construction – working- advantages – disadvantages - applications - photomultipliers – introduction – construction – working - applications.

UNIT – IV - LIGHT DETECTING DEVICES II

Photodetector or photoresistor or light dependent resistor (LDR) -- introduction - construction - working - types of LDR - advantages - disadvantages - applications.

UNIT -V - CATHODE-RAY OSCILLOSCOPE - CRO

Cathode-ray oscilloscope (CRO) – introduction –block diagram – construction - principle of working – types of CRO – applications.

BOOKS FOR STUDY

- 1. Elements of solid-state electronics Ambrose and Devaraj
- 2. Electronics G.Jose Robin & Ubald Raj
- **3.** Electronics I M.Palaniappan
- 4. Optoelectronic Devices and Systems: Volume 1 S.C.Gupta.
- 5. Semiconductor Optoelectronic Devices 2nd Editionn Pallab Bhattacharya

BOOKS FOR REFERENCE

- 1. Electronics Gupta Kumar
- **2.** Electronics B.L. Theraja
- 3. Optoelectronics and Photonics: Principles and Practices Safa Kasap

COURSE OUTCOME:

On completion of the Course the student will be able to,

CO	Statement	Blooms Taxonomy level
CO1	To understand LEDs their working, advantages and applications	K2
CO2	To know about LCD, their working and uses	K3
CO3	Understand the function of different semiconductor opto devices	K2
CO4	To discuss the concept of different photo detecting devices	K2
CO5	To learn about the working of CRO	К3

K2-Understanding K3-A

K3-Applying

Mapping of Course Outcome with POs:

СО	PO1	PO2	PO3	PO4	PO5	Blooms Taxonomy level
CO1	Н	Н	Н	Н	Н	K2
CO2	М	Н	Н	М	Н	K3
CO3	Н	Н	Н	Н	М	K2
CO4	Н	Н	М	Н	Н	K2
CO5	М	Н	Н	Н	Н	K3
		H-High	M-Medi	um L-Lov	V	

K2-Understanding K3-Applying

B.Sc Physics Degree Course (Semester)

Pattern of question Course for Physics Core, Core Elective and Ancillary subjects for the Academic Years 2022-25

SUMMATIVE EXAMINATION

Time: 3hrs

Max.Mark:75

Section – A – $10 \times 1 = 10$ ----- No Choice

Section $-B - 5 \ge 5 = 25$ ------ 5 Questions (either or type) Section $-C - 4 \ge 10 = 40$ ------ 4 Out of 6 Questions(open choice)

INTERNAL (Theory)

1
narks
narks
marks

INTERNAL - PATTERN OF QUESTION PAPER

Duration – 2 hour	Total Marks - 30
Section – A – $6 \times 1 = 6$	No Choice
Section – B – $2 \times 4 = 8$	2 either or type Questions
Section – C – 2 x $8 = 16$	2 Out of 4 Questions –
	Open choice questions

CORE COURSE XVI - **PROJECT**

Allocation of Marks:

CIA – 25 marks

The project supervisor will award the marks assessing the performance of the student through out the process of the project.

Viva-voce – 75 marks

The student will appear for Vive-voce examination. The examiner will assess the quality of the project, subject knowledge and the presentation of the learner.

Part – IV – SBC & NME

SUMMATIVE EXAMINATION

Time: 3hrs	Total.Mark:75
Section $- A - 5 \ge 3 = 15$	 5 Out of 8 Questions
Section – B – 5 x $6 = 30$	 5 Out of 8 Questions
Section – C -3 x 10 = 30	 3 Out of 5 Questions

INTERNAL - PATTERN OF QUESTION PAPER

Duration – 1 hour	Total Marks - 15
Section – A – $2 \times 2 = 4$	2 out of 3 Questions
Section $-B - 1 \times 4 = 4$	1 out of 2 Questions
Section – C – 1 x 7 = 7	1 out of 2 Questions

Part – IV – ENVIRONMENTAL SCIENCE

SUMMATIVE EXAMINATION

Max marks 75

Section – A: (10X1=10)

Ten questions are to be given, testing K1. All questions are to be answered. Each question carries one mark. Questions must be taken from all units.

Section – B: (5X7=35)

Five questions are to be given in the internal choice (Either-or) pattern, testing K2 and K3. Questions must be taken from all units. Each question carries seven marks.

Q.No-11 (A and B) from Unit – I Q. No -12 (A and B) from Unit – II Q. No -13 (A and B) from Unit – III Q.No-14(A and B) from Unit - IV Q.No-15(A and B) from Unit - V Section – C: (3X10=30)

Five questions are to be given, testing K4 and K5. Three questions are to be answered. Each question carries Ten Marks. Questions must be taken in this order.

Q.No-16(A and B) from Unit - I Q.No-17(A and B) from Unit - II Q.No-18(A and B) from Unit - III Q.No-19(A and B) from Unit - IV Q.No-20(A and B) from Unit - V

INTERNAL (Theory)

Max marks 25

Test		: 15marks
Seminar	:	5marks
Assignment	:	5marks
	T-+-1 .	25

Total : 25marks

INTERNAL - PATTERN OF QUESTION PAPER

Duration – 2 hour	Total Marks - 30
Section – A – $6 \times 1 = 6$	 No Choice
Section – B – $2 \times 4 = 8$	 2 either or type Questions
Section $- C - 2 \ge 8 = 16$	 2 Out of 4 Questions –
	Open choice questions

Part IV - VALUE EDUCATION – (VE)

SUMMATIVE EXAMINATION

Time: 3 hrs

Max Mark: 75

Theory [End-Semester Examination] – **75 marks**

Section – A: Ten objective type questions with multiple answers are to be given. (10X1=10)
Section – B: Five short essay type questions in 'Either – or' pattern are to be given. (5X7=35)
Section – C: Five long descriptive type questions are to be given. Three questions are to be answered. (3X10=30)

Internal

Practical [Performing Yoga & Meditation] – 25 marks

EXTRA CREDIT COURSE

SUMMATIVE EXAMINATION

Time: 3 hrs

Total Mark: 100

Section $-A - 5 \times 20 = 100$ ----- 5 Out of 9 Questions.

VALUE ADDED COURSE – (VAC)

SUMMATIVE EXAMINATION

Time: 3 hrs

Total Mark: 100

Section $-A - 4 \times 20 = 80$ ----- 4 Out of 8 Questions

Section $-B - 1 \times 20 = 20$ ------ 1 Out of 2 Questions

(based on practical Knowledge)