## ARULMIGU PALANIANDAVAR ARTS COLLEGE FOR WOMEN

(AUTONOMOUS)

Re-accredited with B<sup>++</sup> by NAAC in 3<sup>rd</sup> cycle
(Run by Hindu Religious and Charitable Board under the Aegis of
Arulmigu Dhandayuthapani Swamy Thirukovil, Palani)
(Affiliated to Mother Teresa Women's University, Kodaikanal)
Chinnakalayamputhur(PO), Palani 624 615.

Curriculum Framework and Syllabus for Outcome Based Education in

# **BACHELOR OF COMPUTER APPLICATIONS**

(PROGRAMME CODE: UGBCAS)

(Based on the syllabus recommended by TANSCHE)

Degree Programme for the students admitted from the Academic year

**2022-2023 Onwards** 



PG DEPARTMENT OF COMPUTER SCIENCE

## INSTITUTIONAL VISION AND MISSION

## **VISION**

➤ Enlightenment and Empowerment of Rural Women

## **MISSION**

- ➤ To imbibe research activity and collaborative programs with our local communities.
- ➤ High quality teaching, providing learning environment with practical exposure.
- ➤ Encouragement of a questioning spirit and self-reliance.
- > Strong and support education for the student's employability.

## **DEPARTMENT VISION AND MISSION**

## **VISION**

- > To provide the atmosphere for students so they can create employment opportunities for themselves as well as for others.
- To prepare the students for technical training with revolutionary vision who can compete globally.

## **MISSION**

- To provide technical education to the students through well equipped-labs.
- ➤ Giving personal attention to weaker students consequently, allowing them to cope up with others scholars.
- ➤ To provide a student friendly environment that is amicable for practical knowledge.
- To implement the professional and communication skills of the students, working deliberately.

## B.C.A

## REGULATIONS

#### 1. Preamble:

Computer Science department was established in 1998 as self supporting department with the curriculum specifically designed to reflect the depth and breadth of computer science. To encourage young rural women students to adopt higher education, M.Sc Computer Science Programme is added in the department in 2005. To bridge the gap between the studies of computers and its applications, BCA programme is introduced in the year 2008. Expert members from Academia and Industry provide inputs in introducing specialized courses in the curriculum to suit industry needs. To further enhance the quality of the program, the department adheres Outcome Based Education (OBE) 2019-2020 onwards.

## 2. Eligibility for Admission

➤ Candidate should have passed the Higher Secondary Examination conducted by the board of syndicate as equivalent there to with Mathematics.

## 3. Duration of the course

➤ The students will undergo the prescribed course of study for a period of not less than three academic years (Six semesters).

#### 4. Medium of Instruction:

> English

## 5. General Framework:

Course Study: Part I, II, III, IV, V subjects.

## 6. Eligibility of the degree:

- ➤ Candidates will be eligible, if they complete the course with the required credits and pass in the prescribed examinations.
- The candidate requires 75% of attendance to attend the end semester examination.

> Two internal tests will be conducted and the average of two tests will be considered for the internal mark consolidation.

➤ To get Graduation, the students should gain minimum 140 credits.

## 7. Evaluation

## **Pattern of Evaluation**

|           | Int. | Ext. | Total |
|-----------|------|------|-------|
| Theory    | 25   | 75   | 100   |
| Practical | 40   | 60   | 100   |
| Project   | 40   | 60   | 100   |

## **Internal Assessment Components**

## Theory (25 Marks)

| Test       | - | 15 |
|------------|---|----|
| Assignment | - | 5  |
| Seminar    | - | 5  |
|            |   |    |
|            |   | 25 |
|            |   |    |

## 8. Content Delivery Methods

- 1. Lecture method
- 2. Group Discussion
- 3. ICT

## 9. Passing Rules

- > 75% of marks are allotted for external evaluation and 25% of the marks are allotted for internal evaluation in each of the theory subjects
- ➤ 60% of marks are allotted for external evaluation and 40% of the marks are allotted for internal evaluation in each of the practical subjects.
- ➤ For each courses there will be Continuous Internal Assessment (CIA) and Final Semester Examination.
- For each paper, passing minimum is 40% in both internal and external

## 10. Pattern of the Question Paper (External)

# BLOOM'S TAXONOMY BASED ASSESSMENT PATTERN

K1-Knowledge; K2- Comprehend; K3- Applications; K4-Analysis; K5- Synthesis; K6-Evaluation

# 1. PART I, II, III External Question Pattern: Theory – 75 Marks (3 Hours)

| Bloom's<br>Category | Section                                           | Marks    | Course<br>Outcomes | Description             | Total |
|---------------------|---------------------------------------------------|----------|--------------------|-------------------------|-------|
| K1,K2               | A (Answer All)  Two Questions from each unit      | 10*1=10  | CO1 & CO2          | One word/ Short Answers |       |
| K3 & K4             | B (Either or Choice) One Questions from each unit | 5*5 = 25 | CO2 & CO3          | Descriptive / Detailed  | 75    |
| K3, K4, K5<br>& K6  | C (Answer 5 out of 8)                             | 5*8 = 40 | CO3,CO4 & CO5      | Descriptive / Detailed  |       |

## **Internal Question Pattern (30 Marks – 2 Hours Test)**

(Converted into 15 Marks)

| Bloom's<br>Category | Section               | Marks    | Course<br>Outcomes | Description                   | Total              |
|---------------------|-----------------------|----------|--------------------|-------------------------------|--------------------|
| K1,K2               | A (Answer All)        | 6*1=6    | CO1 & CO2          | One word/<br>Short<br>Answers | 30                 |
| K3,K4               | B (Answer 2 out of 4) | 2* 4 = 8 | CO2 & CO3          | Descriptive / Detailed        | (Converted into 15 |
| K3, K4, K5<br>& K6  | C (Answer 2 out of 4) | 2*8 = 16 | CO3,CO4 &<br>CO5   | Descriptive / Detailed        | Marks)             |

## PART IV (SBC & NME) – External (75 Marks – 3 Hours)

| Bloom's Category | Section              | Marks   | Course        | Description          | Total |
|------------------|----------------------|---------|---------------|----------------------|-------|
|                  |                      |         | Outcomes      |                      |       |
| K1,K2            | A(Answer 5 out of 8) | 5*3=15  | CO1 & CO2     | Short Answers        |       |
| K3,K4            | B(Answer 5 out of 8) | 5*6=30  | CO2 & CO3     | Descriptive/Detailed | 75    |
| K3, K4, K5 & K6  | C(Answer 3 out of 5) | 3*10=30 | CO3,CO4 & CO5 | Descriptive/Detailed |       |

# PART IV (SBC & NME) – Internal (15 Marks – 1 Hour)

| Bloom's<br>Category | Section               | Marks   | Course<br>Outcomes | Description            | Total |
|---------------------|-----------------------|---------|--------------------|------------------------|-------|
| K1,K2               | A (Answer 2 out of 4) | 2*2 = 4 | CO1 & CO2          | Short<br>Answers       |       |
| K3,K4               | B(Answer 1 out of 2)  | 1*4 = 4 | CO2 & CO3          | Descriptive / Detailed | 15    |
| K3, K4, K5<br>& K6  | C(Answer 1 out of 2)  | 1*7 = 7 | CO3,CO4 &<br>CO5   | Descriptive / Detailed |       |

# SEMESTER-WISE DISTRIBUTION OF COURSES WITH SCHEME OF VALUATION

## **UNDER CBCS PATTERN**

# **OUTCOME BASED EDUCATION (OBE)**

|                 | Sub.                                      | Title of Paper                                    | Hours  |     | Marks | 3   | Credits | Exam         |
|-----------------|-------------------------------------------|---------------------------------------------------|--------|-----|-------|-----|---------|--------------|
| Part            | Code                                      | Title of Laper                                    | liouis | INT | EXT   | TOT | Credits | ( <b>H</b> ) |
|                 |                                           | SEMESTER -                                        | - I    |     |       |     |         |              |
| PART I          | AUGT1                                     | Tamil                                             | 6      | 25  | 75    | 100 | 3       | 3            |
| PART II         | AUGE1                                     | English                                           | 6      | 25  | 75    | 100 | 3       | 3            |
|                 | AUBCC1                                    | <b>Core I:</b> Programming in C                   | 5      | 25  | 75    | 100 | 5       | 3            |
| PART III        | AUBCL1                                    | Core II: Practical –I: Programming in C           | 5      | 40  | 60    | 100 | 3       | 3            |
|                 | AUBCA1                                    | Allied I: Discrete Mathematics                    | 5      | 25  | 75    | 100 | 5       | 3            |
| PART<br>IV      | AUBCWT1                                   | Skill Based Course-I: Web Technology Lab          | 2      | 40  | 60    | 100 | 2       | 3            |
|                 | AUVE                                      | Value Education - Yoga                            | 1      | 25  | 75    | 100 | 2       | 3            |
|                 | TOTAL                                     |                                                   | 30     |     |       | 700 | 23      |              |
|                 |                                           | SEMESTER -                                        | - II   |     |       |     |         |              |
| PART I          | AUGT2                                     | Tamil                                             | 6      | 25  | 75    | 100 | 3       | 3            |
| PART II         | AUGE2                                     | English                                           | 6      | 25  | 75    | 100 | 3       | 3            |
|                 | AUBCC2 Core III :Data Structures with C++ |                                                   | 6      | 25  | 75    | 100 | 5       | 3            |
| PART III AUBCL2 |                                           | Core IV: Practical -II: Data Structures using C++ | 5      | 40  | 60    | 100 | 3       | 3            |
|                 | AUBCA2                                    | Allied II: Digital Electronics                    | 5      | 25  | 75    | 100 | 5       | 3            |
| PART IV         | AUBCID2                                   | Skill Based Course –II:<br>Image Designing Lab    | 2      | 40  | 60    | 100 | 2       | 3            |
|                 |                                           | TOTAL                                             | 30     |     |       | 600 | 21      |              |

|          |                                            | SEMESTER –                                        | Ш  |    |    |     |    |   |
|----------|--------------------------------------------|---------------------------------------------------|----|----|----|-----|----|---|
|          | AUBCC3                                     | Core V: Java Programming                          | 5  | 25 | 75 | 100 | 5  | 3 |
|          | AUBCC4                                     | Core VI: Computer Organization                    | 6  | 25 | 75 | 100 | 4  | 3 |
| PART III | AUBCL3                                     | Core VII: Practical- III: Java Programming        | 5  | 40 | 60 | 100 | 3  | 3 |
|          | AUBCL4                                     | Core VIII: Practical -IV: MATLAB                  | 5  | 40 | 60 | 100 | 3  | 3 |
|          | AUBCA3                                     | Allied III: Principles of Business Accounting     | 5  | 25 | 75 | 100 | 5  | 3 |
|          | AUBCBA3                                    | Skill Based Course-III: Business Accounting Lab   |    | 40 | 60 | 100 | 2  | 3 |
| PART IV  | AUBCN1 Computer Application for Automation |                                                   | 2  | 25 | 75 | 100 | 2  | 3 |
|          |                                            | TOTAL                                             | 30 |    |    | 700 | 24 |   |
|          |                                            | SEMESTER –                                        | IV |    |    |     |    |   |
|          | AUBCC5                                     | Core IX: Python Programming                       | 6  | 25 | 75 | 100 | 5  | 3 |
|          | AUBCC6                                     | Core X:Operating System                           | 6  | 25 | 75 | 100 | 5  | 3 |
|          | AUBCL5                                     | Core XI: Practical-V: R Programming               | 6  | 40 | 60 | 100 | 3  | 3 |
| PART III | AUBCL6                                     | Core XII: Practical -VI: Python Programming       | 5  | 40 | 60 | 100 | 3  | 3 |
|          | AUBCA4                                     | Allied IV: Computer Based Optimization Techniques | 5  | 25 | 75 | 100 | 5  | 3 |
| PART IV  | AUBCPM4                                    | Skill Based Course -IV: Principles of Management  | 2  | 25 | 75 | 100 | 2  | 3 |
| PART V   | AUEXA4                                     | Extension Activities                              | -  | _  | -  | 100 | 1  |   |
|          |                                            | TOTAL                                             | 30 |    |    | 700 | 24 |   |

|          |                             | SEMESTER -                                                                                            | - <b>V</b> |    |    |     |    |   |
|----------|-----------------------------|-------------------------------------------------------------------------------------------------------|------------|----|----|-----|----|---|
|          |                             | Core XIII: Relational                                                                                 |            |    |    |     |    |   |
|          | AUBCC7                      | Database Management System                                                                            | 5          | 25 | 75 | 100 | 5  | 3 |
|          | AUBCL7                      | Core XIV: Practical -VII:  Dot Net Programming                                                        | 6          | 40 | 60 | 100 | 4  | 3 |
|          | AUBCL8                      | Core XV: Practical-VIII: Relational Database Management System                                        | 5          | 40 | 60 | 100 | 3  | 3 |
| PART III | AUBCE1                      | <ul><li>Elective I</li><li>1. Software Engineering</li><li>2. Cloud Computing</li></ul>               | 6          | 25 | 75 | 100 | 5  | 3 |
|          | AUBCE2                      | Elective II  1. Data Mining Techniques 2. Information Security                                        | 6          | 25 | 75 | 100 | 5  | 3 |
| PART IV  | AUBCNA5                     | Skill Based Course-V: Numerical Aptitude                                                              | 2          | 40 | 60 | 100 | 2  | 3 |
|          |                             | TOTAL                                                                                                 | 30         |    |    | 600 | 24 |   |
|          |                             | SEMESTER –                                                                                            | VI         |    |    |     |    |   |
|          | AUBCC8                      | Core XVI: Computer Networks                                                                           | 6          | 25 | 75 | 100 | 4  | 3 |
|          | AUBCC9                      | Core XVII: Computer Graphics                                                                          | 5          | 25 | 75 | 100 | 4  | 3 |
|          | AUBCPR                      | Core XVIII: Project Work                                                                              | 7          | 40 | 60 | 100 | 5  | 3 |
| PART III | AUBCE3                      | Elective III  1. Big Data Analytics 2. Fundamentals of Digital Image Processing 3. MOOC Online Course | 6          | 25 | 75 | 100 | 5  | 3 |
|          | AUBCGC6                     | Skill Based Course -VI: Green Computing                                                               | 2          | 25 | 75 | 100 | 2  | 3 |
|          | AUES6 Environmental Studies |                                                                                                       | 2          | 25 | 75 | 100 | 2  | 3 |
|          | ACESO                       | AUBCN2 Non Major Elective –II: Internet Basics                                                        |            | 1  |    | +   |    | 1 |
| PART IV  |                             |                                                                                                       | 2          | 25 | 75 | 100 | 2  | 3 |

## **EXTRA CREDIT PAPERS:**

| S. No. | Name of the Papers                      | Sub. Code | Semester | Marks | Credits |
|--------|-----------------------------------------|-----------|----------|-------|---------|
| 1.     | Internet of Things                      | UGEIT     | I        | 100   | 2       |
| 2.     | IPR, Plagiarism, Copyrights and Patents | UGEIPC    | III      | 100   | 2       |
| 3.     | Trends in Information Technology        | UGETI     | V        | 100   | 2       |

## **VALUE ADDED COURSES:**

| S. No | Subject                      | Subject Code | Semester | Marks |
|-------|------------------------------|--------------|----------|-------|
| 1.    | Hardware and Troubleshooting | AUBCHT       | II       | 100   |
| 2.    | Application Development in   | AUBCADPL     | IV       | 100   |
|       | Programming Languages        |              |          |       |
| 3.    | Computer for Digital Era     | AUBCCDE      | VI       | 100   |

## LIST OF SKILL BASED COURSES

1. Semester I : Web Technology Lab

2. Semester II : Image Designing Lab

3. Semester III : Business Accounting Lab

4. Semester IV : Principles of Management

**5. Semester V** : Numerical Aptitude

**6. Semester VI** : Green Computing

## LIST OF ALLIED PAPERS

**Semester I** Allied I - Discrete Mathematics

Semester II Allied II - Digital Electronics

Semester III Allied III - Principles of Business Accounting

Semester IV Allied IV - Computer Based Optimization Techniques

## **LIST OF ELECTIVE PAPERS**

## **SEMESTER V:**

## **ELECTIVE I:**

- 1. Software Engineering (or)
- 2. Cloud Computing

## **ELECTIVE II:**

- 1. Data Mining Techniques (or)
- 2. Information Security

## **SEMESTER VI**

## **ELECTIVE III:**

- 1. Big Data Analytics (or)
- 2. Fundamentals of Digital Image Processing
- 3. MOOC Online Course

## **LIST OF NME PAPERS**

- 1. **Semester III** Computer Application for Automation.
- 2. **Semester VI** Internet Basics

## **CORE PAPERS**

## \* Theory Papers

Core I

1.

| 2. | Core III | Data Structures with C++ |
|----|----------|--------------------------|
| 3. | Core V   | Java Programming         |
| 4. | Core VI  | Computer Organization    |
| 5. | Core IX  | Python Programming       |
| 6. | Core X   | Operating System         |

7. Core XIII Relational Database Management System

Programming in C

- 8. **Core XVI** Computer Networks
- 9. **Core XVII** Computer Graphics

## **Practical Papers**

| 1. | Core II   | Practical –I    | Programming in C                      |
|----|-----------|-----------------|---------------------------------------|
| 2. | Core IV   | Practical –II   | Data Structures using C++             |
| 3. | Core VII  | Practical –III  | Java Programming                      |
| 4. | Core VIII | Practical – IV  | MATLAB                                |
| 5. | Core XI   | Practical – V   | R Programming                         |
| 6. | Core XII  | Practical –VI   | Python Programming                    |
| 7. | Core XIV  | Practical – VII | Dot Net Programming                   |
| 8. | Core XV   | Practical –VIII | Relational Database Management System |

## \* Project

# 1. Core XVIII: Project Work

# DISTRIBUTION OF CORE, ALLIED, ELECTIVE, NME AND SBC

| PART I | Curriculum Structure        | No. of Courses                 | Credits |
|--------|-----------------------------|--------------------------------|---------|
| I      | Languages                   | 02                             | 06      |
| II     | English                     | 02                             | 06      |
| III    | Core Papers                 | 18                             | 72      |
|        |                             | (9 Theory + 8 Lab + 1 Project) |         |
|        | Allied Courses              | 04                             | 20      |
|        | Core Elective               | 03                             | 15      |
| IV     | Non-Major Elective          | 02                             | 04      |
|        | Value Based Course          | 02                             | 04      |
|        | Skill Based Course          | 06                             | 12      |
| V      | <b>Extension Activities</b> | 01                             | 1       |
|        | TOTAL                       | 40                             | 140     |

**TOTAL MARKS:** 

4000

## **OUTCOME BASED EDUCATION**

"Outcome-Based Education" (OBE) is considered as a student-centered instruction model that focuses on measuring student performance through outcomes. Outcomes include knowledge, skills and attitudes. In the OBE model, the required knowledge and skill sets for a particular degree is predetermined and the students are evaluated for all the required parameters (Outcomes) during the course of the program.

**Part** − **I** : Languages: Part − 1 comprises of category namely Tamil

**Part – II: English**: Part – 2 comprises of the category namely English

**Part – III: Core Courses:** A set of *major papers* that include Theory, Practical, Allied, Core Electives, Project in the major field of study selected by the student. Core courses are mandatory in nature.

**Part** – **IV:** Non - Major Electives (NME): A set of non – major elective courses are offered as choices of the students, outside of their major discipline. The courses other than the core and allied shall be opted by the students as Non – Major Elective.

**Value Based Courses (VBC):** Courses of cross-cutting issues relevant to the current pressing concerns both nationally and internationally such as environment and human values.

**Skill Based Courses (SBC):** The courses offered as skill - based courses under Part IV of the programme is aimed at imparting Advanced Skill of the programme. This comprises of six courses from 1<sup>st</sup> to 6<sup>th</sup> semesters.

Part – V: Extension Activities: Students shall be actively participated in the extension activities.

# PROGRAM EDUCATIONAL OBJECTIVES

After few years from the completion of BCA programme, the students will be able to

| PEO1 | To enrich knowledge in the core areas of computer science.                                                                                     |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO2 | To equip the students to meet the requirement of Corporate world and Industry standard.                                                        |
| PEO3 | To engage in professional development and to pursue post graduate education in the fields of Information Technology and Computer Applications. |
| PEO4 | Involve in lifelong learning to adapt the technological advancements in the emerging areas of computer applications.                           |
| PEO5 | To inculcate team spirit for handling complex problems in data analysis and research work.                                                     |

## **PROGRAMME OUTCOMES**

Upon successful completion of the programme, the student will able to

| PO1 | Understand the basic and advanced concepts involved in real world computing      |  |  |  |  |
|-----|----------------------------------------------------------------------------------|--|--|--|--|
|     | systems                                                                          |  |  |  |  |
| PO2 | Develop practical skills to provide solutions to industry, society and business. |  |  |  |  |
| PO3 | Develop various real-time applications using latest technologies and             |  |  |  |  |
| 103 | programming languages.                                                           |  |  |  |  |
| PO4 | Possess Strong foundation for their higher studies.                              |  |  |  |  |
| PO5 | Become employable in various IT companies and Government jobs.                   |  |  |  |  |

# **PROGRAMME SPECIFIC OUTCOMES**

Graduate with a BCA will have the ability to

| PSO1 | Able to work as software programmer, system and network administrator, web |
|------|----------------------------------------------------------------------------|
| 1501 | designer faculty for computer science and computer applications.           |
| PSO2 | Able to design and develop computer applications for Business problems.    |
| PSO3 | To impart the basic knowledge and conceptual understanding of Computing    |
| 1503 | Systems through mathematical and analytical skills.                        |
| PSO4 | Able to create platforms to become an entrepreneur and a relish for higher |
| 1504 | studies such as M.C.A., M.Sc., etc.                                        |
| PSO5 | Work with and communicate effectively with professionals in various fields |
| 1303 | and persue life long professional development in computing.                |
| PSO6 | Develop efficient and effective software systems using modern computer     |
| 1300 | techniques.                                                                |

# MAPPING INSTITUTION MISSION WITH PROGRAMME EDUCATIONAL OBJECTIVITIES

| MAPPING |                 |   |   |   |  |  |  |  |  |
|---------|-----------------|---|---|---|--|--|--|--|--|
|         | IO1 IO2 IO3 IO4 |   |   |   |  |  |  |  |  |
| PEO1    |                 | * |   | * |  |  |  |  |  |
| PEO2    | *               |   |   | * |  |  |  |  |  |
| PEO3    |                 | * |   |   |  |  |  |  |  |
| PEO4    |                 |   | * | * |  |  |  |  |  |
| PEO5    | *               |   |   |   |  |  |  |  |  |

# CORE I AUBCC1 - PROGRAMMING IN C

Hours: 5 Credits: 5

Semester : I

## Preamble

This course helps the students to learn C Programming language and develop programming skills in writing simple programs.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of Cos                                         | Blooms' Taxonomy Level   |
|-----|------------------------------------------------------------|--------------------------|
| CO1 | Recall and understand the fundamentals of C programming.   | Knowledge (Level K1)     |
| CO2 | To acquire the programming logic, use of program           | Comprehension (Level K2) |
|     | instruction, syntax and programming structure.             |                          |
| CO3 | Understand the concepts of decision making, branching      | Knowledge (Level K1)     |
|     | and looping                                                | Comprehension(Level K2)  |
| CO4 | Implement different operations on arrays and functions     | Application (Level K3)   |
|     | to solve the problem                                       |                          |
| CO5 | Execute file operations to preserve data in physical disk. | Application(Level K3)    |

## **COURSE CONTENT**

## UNIT - I:

History of C - Basic Structure of C Programs - Character Set - C Tokens - Keywords and Identifiers - Constants and Variables - Data Types - Storage Class - Operators and Expressions.

## **UNIT - II:**

**Managing Input and Output Operations** - Decision Making and Branching: IF statement – Simple IF Statement-The IF....ELSE Statements - Nesting of IF.....ELSE Statements – The Switch Statement – The? : Operator - The GOTO Statement – **Decision Making and Looping** – The WHILE Statement – The DO Statement – The FOR Statement-Jumps in LOOPS.

## **UNIT - III:**

**Arrays:** One-dimensional Arrays – Two-dimensional Arrays – Multi-dimensional Arrays – Character Arrays and Strings.

**User -defined Function** – Elements of user defined functions – definition of functions – function calls – Functions declaration – category of functions - Nesting of functions – Passing arrays to functions – Scope, visibility and life time of variables.

## **UNIT - IV:**

**Structures**: Defining a Structure – Declaring Structure variables – Accessing structure members – structure initialization – copying and comparing Structure Variables – Arrays of structure – Arrays within structure – Structure within structure.

**Union**: introduction- size of structure – Bit fields.

**Pointers**: Accessing the address of a variable – declaration – initialization – accessing a variable through its pointer – pointer expression – pointers & characters string – Array of pointers – Pointers as functions arguments – pointers and Structures.

## UNIT - V:

**File Management**: Introduction – Defining and Opening a File – Closing a File – Input / Output Operations on Files - Error Handling During I/O Operation – Random Access to Files – Command Line Arguments.

#### TEXT BOOK

➤ E.Balagurusamy, *Programming in ANSI 'C'*, Eighth Edition, Tata McGraw – Hill Publishing Company, 2019.

#### REFERENCE BOOKS

- ➤ Yashwanth Kanetkar, "Let us C", BPB Publication, 14<sup>th</sup> Edition, 2021.
- $\blacktriangleright$  Byron Gottfried Programming with C Tata McGraw Hill,  $3^{rd}$  Edition, 2013.
- ➤ V.Rajaraman Computer Programming in C Prentice Hall of India Pvt. Ltd,1<sup>st</sup> Edition, 2004.
- ➤ SmarajitGhosh Programming in C Prentice Hall of India Pvt. Ltd.,1<sup>st</sup> Edition, 2004.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs40/preview
- https://onlinecourses.nptel.ac.in/noc20\_cs91/preview
- > www.tutorialspoint.com
- > www.fresh2fresh.com
- > www.cprogramming.com
- > www.spoken-tutorial.org

| Mapping             |   |   |   |   |   |  |
|---------------------|---|---|---|---|---|--|
| PO1 PO2 PO3 PO4 PO5 |   |   |   |   |   |  |
| CO1                 | Н | Н | Н | Н | Н |  |
| CO2                 | Н | Н | Н | Н | Н |  |
| CO3                 | Н | M | Н | L | Н |  |
| CO4                 | Н | Н | Н | Н | M |  |
| CO5                 | M | Н | M | Н | Н |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE II PRACTICAL - I

## AUBCL1 - PROGRAMMING IN C

Hours: 5 Credits: 3

Semester : I

## Preamble

These courses provide exposure to problem-solving through programming and train the students to the basic concepts of the C-Programming Languages.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                                 | Blooms' Taxonomy Level                  |
|-----|----------------------------------------------------------------------------------------------------|-----------------------------------------|
| CO1 | Read and understand the execution of programs written in C language.                               | Knowledge (Level K1)                    |
| CO2 | Trace the execution of programs written in C language.                                             | Comprehension (Level K2)                |
| CO3 | Implement various concepts in C.                                                                   | Application(Level K3)                   |
| CO4 | Implement programs with pointers and arrays, perform pointer arithmetic and use the pre-processor. | Application(Level K3)                   |
| CO5 | Write the C code for a given algorithm.                                                            | Analysis(Level K4) Synthesis (Level K5) |

## **PROGRAM LIST**

- 1. To find the Sum of individual Digits.
- 2. To reverse a given Digit.
- 3. Prime Number Checking.
- 4. Armstrong Number Series.
- 5. Matrix Manipulation and Transpose of a Matrix.
- 6. Palindrome using String.
- 7. String Concatenation, Comparison and Length.
- 8. Count number of words, character and lines in a sentence.

- 9. Standard deviation, Mean
- 10. Fibonacci using Recursion.
- 11. Swapping of numbers using Pointers.
- 12. To prepare student Mark List using Structures.
- 13. To prepare Employee payroll using Files.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs40/preview
- https://onlinecourses.nptel.ac.in/noc20\_cs91/preview
- > www.tutorialspoint.com
- > www.fresh2fresh.com
- www.cprogramming.com
- > www.spoken-tutorial.org

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | M   | M   | Н   | Н   |  |
| CO2     | Н   | Н   | Н   | Н   | M   |  |
| CO3     | M   | Н   | Н   | M   | Н   |  |
| CO4     | Н   | M   | Н   | Н   | L   |  |
| CO5     | Н   | Н   | M   | M   | Н   |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

# ALLIED I AUBCA1 - DISCRETE MATHEMATICS

Hours: 5 Credits: 5

Semester : I

## Preamble

This course helps the students to obtain the knowledge on Matrices, Polynomial equations, Trigonometry, set theory and Graph Theory.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                   | Blooms' Taxonomy Level   |  |
|-----|------------------------------------------------------|--------------------------|--|
| CO1 | Recall the basic concepts of Mathematics             | Knowledge (Level K1)     |  |
| CO2 | Impart different kinds of Matrices, Equations, Sets, | Knowledge (Level K1)     |  |
|     | Relations and Graphs.                                |                          |  |
| CO3 | Comprehend different kinds of Matrices, Equations,   | Comprehension (Level K2) |  |
|     | Sets, Relations and Graphs.                          |                          |  |
| CO4 | Solve the equations to find the roots                | Comprehension (Level K2) |  |
|     |                                                      | Application (Level K3)   |  |
| CO5 | Analyze the real world problems using Graph          | Analysis (Level K4)      |  |
|     | Theory                                               |                          |  |

## (20% - Theory 80% - Problem)

## **COURSE CONTENT**

## UNIT - I:

**Matrices:** Introduction- Rank of matrix- Consistency of Equation- Cayley Hamilton Theorem-Eigen Values and Eigen Vectors.

## **UNIT - II:**

**Theory of Equations:** Introduction- Imaginary and Irrational Roots- Relation Between Roots and coefficients of the Polynomial Equation- Transformation of Equations by Diminishing or Increasing its Roots- Finding Approximate Roots by Newton's Method.

#### **UNIT - III:**

**Trigonometry:** Expansion of  $\sin n\theta$  and  $\cos n\theta$  in terms of powers of cosine and sine-Expansion of  $\sin^n\theta$  and  $\cos^n\theta$ - Expansion of  $\sin\theta$  and  $\cos\theta$  in terms of powers of  $\theta$ -Hyperbolic Functions- Inverse Hyperbolic Functions.

#### **UNIT - IV:**

**Set Theory:** Introduction-Basic concepts and Notations- Ordered pairs and Cartesian product-Set operations.

## **UNIT - V:**

**Graph Theory**: Introduction- Definitions- Degree of a Vertex-Some special simple graphs-Matrix representation of graphs-Paths, Cycles and connectivity.

#### **TEXT BOOKS**

- ➤ A Abdul Rasheed, *Allied Mathematics* Reprint 2008.(UNIT I,II,III)
- T. Veerarajan, *Discrete Mathematics*, -Reprint 2015 (UNIT IV,V)

## REFERENCE BOOK

➤ P.Kandasamy and K.Thilagavathy, Allied Mathematics Paper I,-Reprint 2013.

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs04/preview
- https://onlinecourses.nptel.ac.in/noc21 cs36/preview
- http://discrete.openmathbook .org/
- http://math.oscarlevin.com/
- > http://www.researchgate.net
- http://www2.cs.uh.edu

| Mapping |                     |   |   |   |   |  |  |
|---------|---------------------|---|---|---|---|--|--|
|         | PO1 PO2 PO3 PO4 PO5 |   |   |   |   |  |  |
| CO1     | Н                   | M | L | Н | L |  |  |
| CO2     | Н                   | Н | M | Н | Н |  |  |
| CO3     | M                   | Н | L | Н | M |  |  |
| CO4     | Н                   | Н | M | Н | Н |  |  |
| CO5     | Н                   | Н | M | Н | Н |  |  |

H-High; M-Medium; L-Low

## SKILL BASED COURSE - I

## AUBCWT1 - WEB TECHNOLOGY LAB

Hours: 2 Credits: 2

Semester : I

## Preamble

This course helps the students to learn HTML concepts and provides the knowledge and skills for creating websites.

## Course Outcomes

On successful completion of the course, the students will be able to

| СО  | Description of COs                                           | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------------------|--------------------------|
| CO1 | Classify various HTML tags.                                  | Comprehension (Level K2) |
| CO2 | Apply various HTML tags.                                     | Applications(Level K3)   |
| CO3 | Illustrate HTML tags in simple programs.                     | Applications(Level K3)   |
| CO4 | Analyze a web page and identify its elements and attributes. | Analysis(Level K4)       |
| CO5 | Design websites using HTML tag.                              | Synthesis(Level K5)      |

## **PROGRAM LIST**

- 1. Design a webpage using basic HTML tags
- 2. Create a webpage using formatting tags
- 3. Develop a webpage using list tags
- 4. Create a webpage using physical and logical tags
- 5. Prepare class timetable using table tags.
- 6. Link the web pages internally and externally using anchor tag.
- 7. Split the web page using frame tag

- 8. Design a web page by applying various attributes of form tag.
- 9. Create a website for your college
- 10. Design a web page for your Department

## **WEBLIOGRAPHY**

- https://www.edx.org/professional-certificate/harvardx-computer-science-for-web-programming
- https://www.w3schools.com
- https://www.php.net.in
- > http://html.net
- ➤ http://www.programmersneed.com e-resources
- ➤ https://epgp.inflibnet.ac.in

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | Н   |
| CO2     | M   | Н   | M   | Н   | Н   |
| CO3     | Н   | M   | L   | Н   | M   |
| CO4     | M   | Н   | M   | Н   | Н   |
| CO5     | Н   | M   | Н   | L   | Н   |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE III

## AUBCC2 - DATA STRUCTURES WITH C++

Hours: 6 Credits: 5

Semester : II

## Preamble

To impart Technical and Practical knowledge in Object oriented Programming with C++ & Data Structures.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of Cos                                        | Blooms' Taxonomy Level   |
|-----|-----------------------------------------------------------|--------------------------|
| CO1 | Get an idea about object oriented paradigm with           | Knowledge (Level K1)     |
|     | concepts of streams, classes, functions, data and objects |                          |
|     | and also recollect the concepts of files.                 |                          |
| CO2 | Classify difference between object oriented               | Knowledge (Level K1)     |
|     | programming and procedural oriented language and data     | Comprehension (Level K2) |
|     | types in C++.                                             |                          |
| CO3 | Apply dynamic memory management techniques using          | Application (Level K3)   |
|     | pointers, constructors, destructors, etc                  |                          |
| CO4 | Recognize fundamental concepts of Data structures,        | Application (Level K3)   |
|     | space complexity and time complexity.                     |                          |
| CO5 | Understand linear data structures such as stacks, queues, | Analysis (Level K4)      |
|     | linked list and non linear data structures such as trees  | Synthesis(Level K5)      |
|     | and Graphs.                                               |                          |

## **COURSE CONTENT**

## UNIT -I:

**Classes and Objects:** Specifying a class Defining Member functions- A C++ Program with Class-Making an Outside function Inline – Nesting of Member Function - Memory allocation for objects- Static Data Members & Member Functions - Array of Objects - Friendly functions – Functions: Function Prototyping – Call by reference – Recursion – Function Overloading.

Constructors and Destructors: Constructors- Parameterized Constructors- Multiple Constructors in Class- copy constructors- Destructors.

## **UNIT - II:**

**Operator Overloading & Inheritance**: Defining operator overloading - Overloading unary operators-Overloading binary operators-using friend function -manipulation of strings using operators-rules for overloading operators- Extending Classes: Introduction- Defining derived classes-single inheritance- Multiple Inheritance-Multilevel Inheritance-Hierarchical inheritance- Hybrid Inheritance - Virtual Base classes- Abstract Classes- Constructor in Derived Classes- Member Classes: Nesting of Classes.

## **UNIT - III:**

**Pointers:** Pointers to Objects – This Pointers – Pointers to Derived Class - Virtual Functions-Pure virtual function - Virtual Constructors and Destructors. **Data Structures:** Introduction to Data Structures – Types of Data Structures - Data Structures Operations.

# UNIT -IV:

**Stack** – Stack Operations – Stack Implementation – **Queue** – Basic Concepts – Queue Operations – Queue Implementations - Circular queues – Priority Queue. **Linked List** – Basic Concepts – Linked List Implementation – Types of Linked List- Circular Linked List – Doubly Linked List.

## UNIT -V:

**Trees:** Basic Concepts - Binary trees - Binary Tree Representation - Binary tree Traversal - Sorting Techniques - Searching Techniques.

## **TEXT BOOK**

➤ Balagurusamy. E, *Object Oriented Programming and Data Structures*, Tata McGraw-Hill Education, 2015. Chapters 4, 6, 5, 7, 8, 9, 10, 12, 13, 14, 15, 17.

## REFERENCE BOOKS

➤ Dewhurst, Stephen C, and Kathy T. Stark, *Programming in C++*. Prentice-Hall, Inc., 1989.

- ➤ Lafore, Robert, *Object-oriented programming in Turbo C++*, Galgotia publications, 2001.
- $\triangleright$  Allen, Weiss Mark, *Data structures and algorithm analysis in C++*, Pearson Education India, 2007.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs42/preview
- https://onlinecourses.nptel.ac.in/noc22\_cs43/preview
- http://www.geeksforgeeks.org
- http://www.learncpp.com
- http://www.codeacademy.com
- > http://www.programiz.com
- http://www.toptel.com
- https://www.tutorialspoint.com/data\_structures\_algorithms/index.htm
- https://www.w3schools.in/data\_structures\_tutorial/intro/
- https://www.tutorialspoint.com/cplusplus/index.htm

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | M   | Н   |
| CO2     | M   | M   | M   | Н   | Н   |
| CO3     | Н   | Н   | L   | Н   | M   |
| CO4     | Н   | Н   | M   | Н   | Н   |
| CO5     | Н   | M   | Н   | Н   | Н   |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE IV PRACTICAL - II

## AUBCL2 - DATA STRUCTURES USING C++

Hours: 5 Credits: 3

Semester : II

## Preamble

To give programming skills on various concepts in Data Structures using C++ programs.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of Cos                                    | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------------|--------------------------|
| CO1 | Understand Object oriented features and C++ concepts. | Comprehension (Level K2) |
| CO2 | Apply Object oriented features and C++ concepts.      | Application (Level K3)   |
| CO3 | Practice to solve the real world problems.            | Application (Level K3)   |
| CO4 | Apply to solve the real world problems.               | Application (Level K3)   |
| CO5 | Experiment various data structure concepts using C++. | Analysis (Level K4)      |

## **PROGRAM LIST**

- 1. Print the Student Name, Register Number, Marks, Total and Average using Array Of Objects.
- 2. Sum of the given numbers using Function Overloading
  - o Two Integer Values
  - o Three Integer Values
  - o Two double Values
- 3. Banking Operations using Constructors and destructors
- 4. Sum of the two values using '+' operator overloading using
  - o Two integer values b. Two floating values
- 5. Find the Arithmetic operations using Inline function.
- 6. Write a C++ program to apply single inheritance and assume the fields by your own.

7. Write a C++ program to apply multiple inheritances and assume the fields by your own.

- 8. Program for Stack Implementation
- 9. Program for Queue Implementation
- 10. Program for Linked List Implementation
- 11. Program for Binary Tree traversal
- 12. Program for Sorting Numbers

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs42/preview
- https://onlinecourses.nptel.ac.in/noc22\_cs43/preview
- http://www.geeksforgeeks.org
- http://www.learncpp.com
- http://www.codeacademy.com
- http://www.programiz.com
- ➤ http://www.toptel.com
- https://www.tutorialspoint.com/data\_structures\_algorithms/index.htm
- https://www.w3schools.in/data-structures-tutorial/intro/
- https://www.tutorialspoint.com/cplusplus/index.htm

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | M   | Н   |
| CO2     | Н   | M   | M   | L   | Н   |
| CO3     | Н   | Н   | L   | Н   | M   |
| CO4     | Н   | Н   | M   | Н   | Н   |
| CO5     | Н   | Н   | M   | M   | Н   |

H-High; M-Medium; L-Low

# ALLIED II

## AUBCA2 - DIGITAL ELECTRONICS

Hours: 5 Credits: 5

Semester : II

## Preamble

This course facilitates the students to acquire knowledge on Digital Computers and also it enables the students to understand the working principles of computer.

## Course Outcomes

On successful completion of the course, the students will be able to

| Description of COs                                  | Blooms' Taxonomy Level                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gain the knowledge of input and output devices,     | Knowledge (Level K1)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1                                                   | Comprehension (Level K2)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Combinational and Sequential Circuits.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Understand the fundamental concepts and             | Knowledge (Level K1)                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| techniques used in digital electronics              | Comprehension (Level K2)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Apply the concepts of Boolean Algebra, Logic        | Applications (Level K3)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| gates, Logic Variables and Truth tables to simplify |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| equations.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Analyze combinational logic in terms of Adder,      | Applications (Level K3)                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Subtractor and Multiplexer circuits.                | Analysis (Level K4)                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comprehend the combinational logic in terms of      | Comprehension (Level K3)                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Adder, Subtractor and Multiplexer circuits          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                     | Gain the knowledge of input and output devices, Number System, Simplification Techniques, Combinational and Sequential Circuits.  Understand the fundamental concepts and techniques used in digital electronics  Apply the concepts of Boolean Algebra, Logic gates, Logic Variables and Truth tables to simplify equations.  Analyze combinational logic in terms of Adder, Subtractor and Multiplexer circuits.  Comprehend the combinational logic in terms of |

## **COURSE CONTENT**

## UNIT - I:

**Number Systems**: Introduction – conversion – Floating point representation of Numbers – Binary Arithmetic Operations - 1's & 2's Complement – 9's &10's complement – Binary Coded Decimal.

**Codes**: Weighted Binary Codes – Non-weighted Codes – Error detecting codes – Error Correcting codes – Alpha numeric codes.

## **UNIT - II:**

**Boolean algebra and Minimization Techniques:** Introduction – Boolean Logic Operations – Basic Laws of Boolean Algebra – Demorgan's Theorems– Sum of Products and Product of Sums – Karnaugh Map.

## **UNIT - III:**

**Logic Gates:** Introduction – Positive and Negative Logic Designation – Logic Gates.

Arithmetic: Half Adder – Full Adder – Half Subtractor- Full Subtractor.

## **UNIT - IV:**

**Combinational Circuits**: **Multiplexer**: Basic Four – Input Multiplexer – 8 to 1 Multiplexer – 16 to 1 Multiplexer. **De-Multiplexer**: 1 to 4 De-Multiplexer – 1 to 8 De-Multiplexer – 1 to 16 De-Multiplexer.

## UNIT - V:

**Decoders:** Basic binary decoder- 3-to-8 decoder – 4-to-16 decoder. **Encoders:** Octal to binary encoder – decimal to BCD encoder. **Flip – Flops:** Introduction - S-R Flip-Flops - D Flip- Flops - J-K Flip-Flops - T Flip- Flops.

## **TEXT BOOK**

S.Salivahanan and S.Arivazhagan, Digital Circuits and Design, Third Edition, Vikas Publishing House Pvt. Ltd. New Delhi, 2007

## REFERENCE BOOK

Anil K.Maini,, Digital Electronics Principles, Devices, Applications Wiley Publications, 2007.

## **WEBLIOGRAPHY**

https://www.edx.org/course/circuits-and-electronics-3-applications-2

- > https://onlinecourses.nptel.ac.in/noc22\_ee55/preview
- http://www.researchgate.net//publication/305991188\_digital\_electronics\_basic \_principles and \_design
- > http://www.agner.org/digital/digital-electronics-agner-fog
- > http://www.en.m.wikipedia.org/wiki/digital-electonics
- ➤ http://www.all about circuits.com/textbook/digital/

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | Н   |
| CO2     | Н   | Н   | M   | Н   | Н   |
| CO3     | Н   | Н   | L   | Н   | M   |
| CO4     | Н   | Н   | M   | Н   | Н   |
| CO5     | Н   | Н   | Н   | Н   | Н   |

H-High; M-Medium; L-Low

\*\*\*\*\*

## SKILL BASED COURSE - II

## AUBCID2 - IMAGE DESIGNING LAB

Hours : 2 Credits : 2

Semester : II

## Preamble

This course imparts practical knowledge on various editing techniques in Photoshop.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                              | Blooms' Taxonomy Level                     |
|-----|-------------------------------------------------|--------------------------------------------|
| CO1 | Design real world applications using Photoshop. | Application (Level K3)                     |
| CO2 | Analyze new features in Photoshop.              | Analysis (Level K4)                        |
| CO3 | Develop new drawings using Photoshop.           | Comprehension (Level K2)                   |
| CO4 | Expertise to work with Flash.                   | Knowledge (Level K1)                       |
| CO5 | animation                                       | Application (Level K3) Synthesis(Level K5) |

## **PROGRAMMING LIST**

- 1. Album preparation
- 2. Invitation Preparation
- 3. Wall Papers
- 4. Visiting Card
- 5. Background Changing and Removing
- 6. Birthday Card
- 7. Friendship Card
- 8. Wedding invitation Card
- 9. Cloning an Image

- 10. Flex Designing
- 11. Photo Editing
- 12. Book Cover
- 13. Animation using Mask Layer
- 14. Transforming object using buttons
- 15. Greeting card design and star blinking

## WEBLIOGRAPHY

- http://www.edx.org
- ➤ http://digital-photography-school.com
- http://www.photoshopessentials.com
- http://www.picturecorrect.com
- http://enviragallery.com
- http://photoshop.fandom.com

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | M   | Н   | M   |
| CO2     | Н   | M   | Н   | M   | Н   |
| CO3     | Н   | Н   | M   | Н   | M   |
| CO4     | L   | Н   | Н   | Н   | M   |
| CO5     | M   | Н   | Н   | Н   | L   |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE V

## AUBCC3 - JAVA PROGRAMMING

Hours: 5 Credits: 5

Semester : III

## Preamble

This course helps the students to inculcate knowledge on Concepts of Java Programming and to create wide range of Applications and Applets using Java.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of Cos                               | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------|--------------------------|
| CO1 | Recollect the OOPs concepts such as Class,       | Knowledge(Level K1)      |
|     | Inheritance, Encapsulation and Polymorphism      | Comprehension (Level K2) |
| CO2 | Understand fundamentals of object-oriented       | Knowledge(Level K1)      |
|     | programming in Java, including defining classes, | Comprehension (Level K2) |
|     | invoking methods, using class libraries, etc.    |                          |
| CO3 | Implement programs using more advanced           | Applications(Level K3)   |
|     | features such as Interface, Packages and         |                          |
|     | Multithreading                                   |                          |
| CO4 | Analyze differences between application          | Analysis(Level K4)       |
|     | program and applets, applet lifecycle and        |                          |
|     | graphics programming                             |                          |
| CO5 | Validate Java Programs using Stream Classes      | Synthesis(Level K5)      |
|     | and files                                        |                          |

## **COURSE CONTENT**

## **UNIT - I:**

**Fundamentals of Object Oriented Programming:** Introduction – Object Oriented Paradigm – Basic concepts of OOP – Benefits of OOP – Applications of OOP – Java Evolution.

Overview of Java Language: Introduction-Simple Java Program – Java Program Structure – Java Tokens - Java Statements - Implementing a Java Program - Java Virtual Machine - Command Line Arguments - Constants, Variables and Data Types.

## **UNIT - II:**

Classes, Objects and Methods: Introduction-Defining a Class - Static Members-Overriding Methods-Final Variables and Methods - Final Classes- Finalizer Methods - Abstract Methods and Classes - Visibility Control.

**Interfaces**: Introduction-Defining Interfaces - Extending Interfaces - Implementing Interfaces-Accessing Interface Variables.

## **UNIT - III:**

**Packages**: Java API Packages-Using System Packages - Creating Packages - Accessing a Package - Using a Package - Adding a Class to Package - Hiding Classes.

**Multithreading Programming**: Creating Threads - Extending the Thread Class - Stopping and Blocking a Thread - Life Cycle of a Thread-Thread Exceptions-Thread Priority - Synchronization-Implementing the 'Runnable' Interface - Managing Error and Exceptions.

## **UNIT - IV:**

**Applet Programming**: Introduction-Preparing to Write Applets - Applet Life Cycle - Designing a web page - Passing Parameters to Applets - Event Handling.

**Graphics Programming**: The Graphics Class-Lines and Rectangles-Circle and Ellipses-Drawing Arcs-Drawing Polygons-Line Graphs-Using Control Loops in Applets.

## **UNIT - V:**

Managing Input / Output Files in Java: Introduction – Concept of Streams - Stream Classes - Byte Stream Classes - Character Stream Classes – Input / Output Exceptions - Creation of Files - Reading/Writing Characters - Reading/Writing Bytes - Random Access Files.

**Java Database Connectivity:** Introduction – JDBC architecture – Discussion with example-Overview of JDBC components.

#### **TEXT BOOK**

➤ E.Balagurusamy, *Programming with JAVA*, *Sixth Edition*. Tata McGraw – Hill, New Delhi 2010.

## REFERENCE BOOK

➤ Herbert Schildt, "Java 2: The Complete Reference", Fifth Edition, Tata McGraw – Hill 2002.

# WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs47/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs03/preview
- http://www.javatpoint.com
- > https://www.tutorialspoint.com
- ➤ https://www.geeksforgeeks.com e-resources
- https://epathshala.nic.in/

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | M   |
| CO2     | Н   | Н   | Н   | M   | Н   |
| CO3     | Н   | Н   | L   | Н   | M   |
| CO4     | Н   | Н   | M   | Н   | Н   |
| CO5     | Н   | M   | Н   | Н   | Н   |

H-High; M-Medium; L-Low

## CORE VI

## AUBCC4 - COMPUTER ORGANIZATION

Hours: 6 Credits: 4

Semester : III

### Preamble

This course concerns about basic structure of hardware and software, and helps to know input output organization and memory subsystem.

#### Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of Cos                                                                                                                                   | Blooms' Taxonomy Level                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| CO1 | Recollect the basic structure of Computer and get the idea about instructions, input-output organization, Memory system, Processing and Pipelining.  | Knowledge (Level K1)                            |
| CO2 | Understand the basic structure of Computer and get the idea about instructions, input-output organization, Memory system, Processing and Pipelining. | Comprehension (Level K2)                        |
| CO3 | Classify various digital components                                                                                                                  | Comprehension (Level K2)                        |
| CO4 | Describe arithmetic and logic operations of processing unit                                                                                          | Comprehension (Level K2) Application (Level K3) |
| CO5 | Analyze various types of computers, instructions, memory system and working principles of pipelining                                                 | Application (Level K3) Analysis (Level K4)      |

#### **COURSE CONTENT**

#### UNIT - I:

**Basic Structure of Computers:** Computer Types - Functional Units - Basic Operational Concepts - Bus Structures - Software - Performance - Processor Clock - Basic Performance Equation.

**Memory Location and Address:** Byte Addressability – Big Endian and Little Endian Assignments – Word Alignment.

#### **UNIT - II:**

**Instructions and Instruction Sequencing**: Assembly Language Notation – Basic Instructions Type – Addressing Modes.

**Input-Output Organization:** Accessing I/O devices - Interrupts - Interrupts - Hardware - Enabling and Disabling Interrupts - Handling Multiple Devices - Exceptions - Direct Memory Access.

#### **UNIT - III:**

**Memory System:** Basic Concepts – Semi Conductor RAM Memories - Static Memories-Asynchronous DRAMs – Read - Only Memories. **Cache Memories**: Introduction - Mapping Functions-Replacement Algorithm. **Virtual Memories:** Address Translation.

#### **UNIT - IV:**

**The Processing Unit:** Fundamentals Concepts: Register Transfers – Performing. Arithmetic or Logic Operations - Fetching a word from Memory-Storing a word into the Memory.

## UNIT - V:

**Pipelining:** Basic Concepts - Role of Cache Memories – Pipeline Performance – Data Hazards – Operand Forwarding - Instruction Hazards.

#### **TEXT BOOK**

➤ V.Carl Hamacher, Zvonko G. Vranesic, Safwat G. Zaky, *Computer Organization* 5<sup>th</sup> *Edition*, McGraw Hill Publication, 2002.

#### REFERENCE BOOK

➤ Morris Mano *Computer System Architecture*, Prentice Hall of India, 2001.

## **WEBLIOGRAPHY**

- https://onlinecourses.nptel.ac.in/noc22\_cs88/preview
- > https://www.edx.org/course/computer-system-design-advanced-concepts-of-modern
- > http://educatech.in
- ➤ http://learncomputerscienceonline.com
- > http://www.studytonight.com
- http://binaryterms.com
- http://www.geeksforgeeks.org

|     | Mapping |     |     |     |     |
|-----|---------|-----|-----|-----|-----|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |
| CO1 | M       | Н   | M   | Н   | Н   |
| CO2 | M       | Н   | M   | Н   | Н   |
| CO3 | Н       | Н   | Н   | Н   | L   |
| CO4 | M       | Н   | M   | Н   | Н   |
| CO5 | Н       | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

# CORE VII PRACTICAL - III AUBCL3 - JAVA PROGRAMMING

Hours: 5 Credits: 3

Semester : III

## Preamble

This course helps the students to inculcate knowledge on Concepts of Java Programming and to create wide range of Applications and Applets using Java.

#### Course Outcomes

On successful completion of the course, the student will be able to

| CO  | Description of COs                                                                         | Blooms' Taxonomy Level |
|-----|--------------------------------------------------------------------------------------------|------------------------|
| CO1 | Sketch the Oops concepts and gain the knowledge of Java and Applet                         | Application (Level K3) |
| CO2 | Write Java Application programs using proper program structure                             | Application (Level K3) |
| CO3 | Describe the core java concepts.                                                           | Analysis (Level K4)    |
| CO4 | Understand about Applets                                                                   | Analysis (Level K4)    |
| CO5 | Create simple stand alone application using Core Java and remote applications using Applet | Synthesis(Level K5)    |

## **PROGRAMMING LIST**

- 1. To perform addition of complex numbers using class and objects.
- 2. To perform multiplication of matrices using class and objects.
- 3. To perform volume calculation using method overloading.
- 4. Using command line arguments, test if the given string is palindrome or not.
- 5. Using multilevel inheritance process student marks.
- 6. Implement multiple inheritances for payroll processing.

- 7. Package illustration.
- 8. To illustrate built-in exceptions (any four).
- 9. To create multiple threads
  - Using Thread class
  - Using Runnable interface
- 10. String manipulation using string methods.
- 11. Applet Graphical methods.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs47/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs03/preview
- http://www.javatpoint.com
- https://www.tutorialspoint.com
- https://www.geeksforgeeks.com
- https://epathshala.nic.in/

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | Н   | Н   | M   |
| CO2     | Н   | Н   | Н   | M   | Н   |
| CO3     | Н   | M   | Н   | L   | Н   |
| CO4     | M   | Н   | M   | Н   | Н   |
| CO5     | Н   | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

# CORE VIII PRACTICAL - IV AUBCL4 - MATLAB

Hours: 5 Credits: 3

Semester : III

#### **Preamble**

This course provides the practical solution for mathematical problems and do image enhancement process.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| СО  | Description of COs                                                                                  | Blooms' Taxonomy Level |
|-----|-----------------------------------------------------------------------------------------------------|------------------------|
| CO1 | Illustrate simple mathematical functions/equations in MATLAB                                        | Application (Level K3) |
| CO2 | Interpret and visualize simple mathematical functions and operations thereon using plots or display | Application (Level K3) |
| CO3 | Test the overall structure of MATLAB program to display required output                             | Analysis (Level K4)    |
| CO4 | Implement core MATLAB concepts.                                                                     | Analysis (Level K4)    |
| CO5 | Create simple stand alone application using MATLAB                                                  | Synthesis(Level K5)    |

# **PROGRAM LIST**

- 1. Basic operations
- 2. Adding Two Images
- 3. Crop Image
- 4. Comparison of Two Values
- 5. Gray Scale to Binary Image
- 6. Flipping An Image
- 7. Image Complement
- 8. Adding and Reducing Noise in an Image

- 9. Color Space Conversion
- 10. Image Reduction
- 11. Multiply and Divide an Image
- 12. Image Transformation by DCT
- 13. Image Compression
- 14. Image Segmentation
- 15. Edge Detection

#### WEBLIOGRAPHY

- https://www.edx.org/course/matlab-essentials
- http://www.mathworks.com/help/rptgen/ug/create-links.html
- http://www.mathworks.com/help/rptgen/ug/mlreportgen.dom.pageref-class.html
- http://www.mathworks.com-help/slrequirements/ref/slreq.find.html
- > http://www.mathworks.in /help/matlab/getting-started-with-matlab.html

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | M   | Н   | L   | M   |
| CO2     | Н   | Н   | M   | Н   | M   |
| CO3     | M   | Н   | Н   | L   | Н   |
| CO4     | M   | Н   | M   | Н   | Н   |
| CO5     | Н   | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

## ALLIED III

## AUBCA3 - PRINCIPLES OF BUSINESS ACCOUNTING

Hours: 5 Credits: 5

Semester : III

#### Preamble

This course provide the knowledge on basic Accounting Frame work and to understand the concepts and conventions of Accounting.

#### Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                     | Blooms' Taxonomy Level |
|-----|----------------------------------------------------------------------------------------|------------------------|
| CO1 | Understand the accounting concept, conversion, methods and its rules.                  | Knowledge(Level K1)    |
| CO2 | Acquire knowledge for preparation of journal and Ledger.                               | Analysis(Level K4)     |
| CO3 | Summarize the ledger balance and check the arithmetical accuracy of books of accounts. | Applications(Level K3) |
| CO4 | Demonstrate an understanding of the principles accrual accounting.                     | Applications(Level K3) |
| CO5 | Prepare Financial statement of sole trading concern with accounting principles.        | Synthesis(Level K5)    |

#### **COURSE CONTENT**

#### UNIT - I:

Accounting –Definition and functions-Accounting Conventions Concepts- System of Accounting – Rules of double – Entry System of Book Keeping- Preparation of Journal and Ledger Accounting

#### **UNIT - II:**

Subsidiary books - Purchase book - sales book - Purchase return book - Sales return book - Bills payable, Bills receivable.

#### **UNIT - III:**

Cash book – Single, Double, Triple column cash book.

#### **UNIT - IV:**

Preparation of trial balance - Rectification of Errors (Simple Journal Entry only)

#### UNIT - V:

Final Accounting: Trading, profit & Loss account -balance sheet with simple adjustments.

#### **TEXT BOOK**

➤ K.L.Nagarajan, N.Vinayakam, P.L.Mani, *Principles of Accountancy*, Revised Edition, Eurasia Publication House (Pvt) Ltd., New Delhi, 2002.

#### REFERENCE BOOKS

- ➤ S.P. Jain and K.L Narang, *Financial Accounting*, 18<sup>th</sup> Edition, Kalyani Publishers, 2014.
- Dr.Peer Mohammed and Dr.Shazuli Ibrahim, Advanced Accounting, Pass Publication, Madurai, 2012.

#### WEBLIOGRAPHY

- https://onlinecourses.swayam2.ac.in/aic20\_sp60/preview
- > http://openstax.org/details/books/priciples-financial-accounting
- ➤ http://openstax.org/details/books/priciples-financial-accounting/pages/preface
- http://www.investopedia.com/terms/a/accounting-priciples.asp
- http://www.priciples of accounting.com

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | M   |
| CO2     | Н   | Н   | M   | Н   | Н   |
| CO3     | Н   | Н   | M   | Н   | M   |
| CO4     | Н   | L   | Н   | M   | Н   |
| CO5     | Н   | M   | Н   | Н   | M   |

H-High; M-Medium; L-Low

# SKILL BASED COURSE - III AUBCBA3 - BUSINESS ACCOUNTING LAB

Hours: 2 Credits: 2

Semester : III

#### Preamble

This course provide the knowledge on basic Accounting Frame work and to understand the concepts and conventions of Accounting.

#### Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                    | Blooms' Taxonomy Level |
|-----|-----------------------------------------------------------------------|------------------------|
| CO1 | Understand the accounting concept, conversion, methods and its rules. | Knowledge(Level K1)    |
| CO2 | Acquire knowledge for preparation of journal and                      | Analysis(Level K4)     |
| COZ |                                                                       | Allarysis(Level K4)    |
|     | Ledger.                                                               |                        |
| CO3 | Summarize the ledger balance and check the                            | Applications(Level K3) |
|     | arithmetical accuracy of books of accounts.                           |                        |
| CO4 | Applications of ledger balance and check the                          | Applications(Level K3) |
|     | arithmetical accuracy of books of accounts.                           |                        |
| CO5 | Prepare Financial statement of sole trading concern                   | Synthesis(Level K5)    |
|     | with accounting principles.                                           |                        |

#### **PROGRAM LIST**

- 1. Company Creation & Accounts master creation
- 2. Voucher Entry (2 Programs)
- 3. Day Book preparation
- 4. Preparation of Trial Balance
- 5. Preparation of Final Accounts ( Profit & Loss A/c & Balance Sheet)
- 6. Stock Group & Stock item creation
- 7. Making voucher entries with Inventory details (2 programs)
- 8. Create Purchase Order and Sales Order.

## WEBLIOGRAPHY

- https://onlinecourses.swayam2.ac.in/aic20\_sp60/preview
- > http://openstax.org/details/books/priciples-financial-accounting
- ➤ http://openstax.org/details/books/priciples-financial-accounting/pages/preface
- > http://www.investopedia.com/terms/a/accounting-priciples.asp
- ➤ http://www.priciples of accounting.com

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | Н   |
| CO2     | Н   | Н   | M   | Н   | Н   |
| CO3     | Н   | Н   | M   | Н   | Н   |
| CO4     | Н   | Н   | Н   | M   | Н   |
| CO5     | Н   | M   | Н   | Н   | M   |

H-High; M-Medium; L-Low

#### NON MAJOR ELECTIVE - I

## AUBCN1 - COMPUTER APPLICATION FOR AUTOMATION

Hours: 2 Credits: 2

Semester : III

#### **Preamble**

This course helps the students to learn about MS-OFFICE, and provide hands-on use of Microsoft Office applications like Word, Excel, Access and PowerPoint.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                | Blooms' Taxonomy Level   |
|-----|---------------------------------------------------|--------------------------|
| CO1 | Practice MS-Office package and do the             | Applications(Level K3)   |
|     | documentation, presentation and manipulating the  |                          |
|     | tables.                                           |                          |
| CO2 | Generate equations, sample calculations and basic | Applications(Level K3)   |
|     | diagrams in Microsoft Word.                       |                          |
| CO3 | Get idea about creation of work sheet in MS-      | Comprehension (Level K2) |
|     | EXCEL.                                            |                          |
| CO4 | Apply various animation effects using             | Applications(Level K3)   |
|     | POWERPOINT.                                       |                          |
| CO5 | Acquire the knowledge about the database          | Analysis(Level K4)       |
|     | creation in MS-ACCESS.                            |                          |

#### **COURSE CONTENT**

#### **UNIT-I: COMPUTER FUNDAMENTALS**

Introduction – Block Diagram of Computer-Computer Hardware and Software – Generations of Computer-Classification of Computers-Input Devices and Output Devices-Characteristics of Computer-Memory.

#### **UNIT-II: MS-WORD**

Introduction – Microsoft word- Microsoft word basic features-Working with paragraph-Working with tables-Mail Merge

#### **UNIT-III: MS-EXCEL**

Introduction – Microsoft Excel Window-Move around a worksheet-Entering excel Formulas and Formatting data.

## **UNIT-IV: MS-POWERPOINT**

MS Power Point: Introduction — Components of PowerPoint-Apply a Design Template-Correct Spelling-Sorter View-Run power Point Slideshow-Print Slides-Create a Title Slide-Insert a New Slide-Use Two Column Text.

#### **UNIT-V: MS-ACCESS**

MS Access: Database overview – Creating a database – Modifying table and Creating Form – Query – Creating reports – Mailing Labels

#### **TEXT BOOKS**

- ➤ K.Kungumaraj and M.Batcha Mydeen and, *Database Concepts*, APAC(W), Palani, 2006.
- ➤ Learning Computer fundamentals, MS-Office and Internet, All Staff Members, PG Department of Computer Science, APAC(W), Palani, 2016.

#### REFERENCE BOOK

> Sanjay Saxena, MS OFFICE 2000 for every one, 1st Edition, S.Chand Publisher, 2000.

#### WEBLIOGRAPHY

- http://www.edx.org
- https://edu.gcfglobal.org/en/subjects/office
- https://www.tutorialspoint.com
- ➤ https://office.live.com

|     | Mapping |     |     |     |     |
|-----|---------|-----|-----|-----|-----|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |
| CO1 | Н       | Н   | L   | Н   | Н   |
| CO2 | Н       | Н   | M   | Н   | Н   |
| CO3 | Н       | Н   | L   | Н   | M   |
| CO4 | Н       | Н   | M   | Н   | Н   |
| CO5 | Н       | Н   | Н   | Н   | Н   |

H-High; M-Medium; L-Low

## CORE IX

#### AUBCC5 - PYTHON PROGRAMMING

Hours: 6 Credits: 5

Semester : IV

#### **Preamble**

This course helps the students to understand the core concepts of programming in Python such as strings, operators, conditional statements, loops, functions and regular expressions.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                                                                                         | Blooms' Taxonomy Level   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| CO1 | Get the basic knowledge about Python Programming                                                                                                           | Comprehension (Level K2) |
| CO2 | Apply essential programming concepts like strings, operators, conditional statements, functions, files and exception handling of Python in simple programs | Application(Level K3)    |
| CO3 | Analyze various concepts of Python                                                                                                                         | Analysis (Level K4)      |
| CO4 | Acquire the knowledge of problem solving and programming capability in python.                                                                             | Synthesis (Level K5)     |
| CO5 | Evaluate applications using core concepts of Python                                                                                                        | Evaluation (Level K6)    |

#### **COURSE CONTENT**

#### **UNIT-I:**

**Introduction to Python**: Introduction-Python Overview-Getting started with python-Comments-Python identifiers-Reserved Keywords-Variables-Standard data types- Operators-Statements and Expressions-String operations-Boolean expressions.

**Classes and Objects:** Overview of OOP-Class definition-Creating objects-Objects as Arguments-Objects as return value-Build in class attributes-Inheritance-Method overriding-Data encapsulation-Data hiding.

#### **UNIT-II:**

**Control statements:** The for loop – While Statement – if -if else statement-Input from keyboard.

**Functions**: Introduction-Built –in functions-Type conversion-Type coercion-Date and time-dir() function-help() function-user defined functions-Parameters & arguments-Function calls-The return statement-Python recursive function-The anonymous functions-writing python scripts.

#### **UNIT-III:**

**Strings :** Strings Compound data type - len function-String slices- Strings are Immutable – String traversal – Escape characters –String formatting operator – String formatting functions.

**Lists**: Values and accessing elements – Lists are Mutable – Traversing a list –Deleting elements from list – Build –in list operators-Built – in list methods.

#### **UNIT-IV:**

**Tuples :** Creating tuples – Accessing values in tuples –Tuple assignment – Tuples as return values –Basic tuple operations –Built – in list methods.

**Dictionaries :** Creating Dictionary-Accessing values in Dictionary-Updating Dictionary-Deleting Elements from Dictionary-Operations in dictionary Built in dictionary methods.

#### **UNIT-V:**

**Files and Exceptions:** Text files-Opening a file-Opening file-Closing a File-File object attributes-Reading from a file-Writing to a file-Renaming a file-Deleting a file-File related methods-Directories-Exceptions-Build-in-Exceptions-Handling Exceptions-Exception with arguments-User defined Exception.

#### **TEXT BOOK**

➤ E.Balagurusamy, "Introduction to Computing and Problem Solving Python", 4<sup>th</sup> Edition, McGraw Hill publications, 2018.

#### REFERENCE BOOKS

- Mark Lutz, *Programming Python*, 4/e, O'Reilly Media, 2010.
- ➤ Mark Summerfield, *Programming in Python 3*, 2<sup>nd</sup> Edition, Addison Wesley, 2010.

#### **WEBLIOGRAPHY**

- https://onlinecourses.nptel.ac.in/noc22\_cs26/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs21/preview
- > www.tutorialspoint.com
- http://en.wikibooks.org/wiki/A Beginners Python Tutorial.
- > www.geeksforgeeks.com
- http://www.python.org./
- ➤ http://programmimg historian.org./en/lessons/working-with-web-pages

|     | Mapping |     |     |     |     |  |
|-----|---------|-----|-----|-----|-----|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |
| CO1 | Н       | M   | Н   | Н   | Н   |  |
| CO2 | Н       | Н   | M   | Н   | Н   |  |
| CO3 | Н       | Н   | M   | Н   | M   |  |
| CO4 | Н       | M   | Н   | Н   | L   |  |
| CO5 | Н       | L   | M   | L   | Н   |  |

H-High; M-Medium; L-Low

## CORE X

## AUBCC6 - OPERATING SYSTEM

Hours: 6 Credits: 5

Semester : IV

## Preamble

This course teaches the Fundamental Aspect of Operating System and gives sufficient knowledge on various system Resources.

#### Course Outcomes

On successful completion of the course, the students will be able to

| СО  | Description of COs                                                                                  | Blooms' Taxonomy Level                        |
|-----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|
| CO1 | Recollect the concept of fundamental aspect of operating system                                     | Knowledge (Level K1)                          |
| CO2 | Analyze important algorithms.                                                                       | Knowledge (Level K1)                          |
| CO3 | Understand the concept of scheduling algorithms, Deadlock, process management and memory management | Knowledge (Level K1) Comprehension (Level K2) |
| CO4 | Sketch the Threats , Memory management and production policies                                      | Application (Level K3)                        |
| CO5 | Acquire the knowledge about file management                                                         | Analysis(Level K4)                            |

#### **COURSE CONTENT**

#### UNIT - I:

**Introduction**: What is an Operating System – Mainframe Systems – Distributed Systems **Processes:** Process Concept – Process Scheduling – Inter-process Communication.

## **UNIT - II:**

**Threads:** Overview – Multithreading Models. **CPU Scheduling:** Basic Concepts – Scheduling Criteria – Scheduling Algorithms.

#### **UNIT - III:**

**Process Synchronization:** Background – The Critical Section Problem – Synchronization Hardware – Semaphores. **Deadlock:** System Model – Deadlock Characterization – Methods For Handling Deadlocks – Deadlock Prevention – Deadlock avoidance – Deadlock detection – Recovery from deadlock

#### **UNIT - IV:**

**Memory Management:** Swapping – Contiguous Memory allocation – Paging – Segmentation – Segmentation with Paging – Virtual Memory: Demand Paging. **Security:** User Authentication – Cryptography

#### **UNIT - V:**

**LINUX**: What is Linux? - Free Software – Where I can use Linux? Linux Kernel – Linux Distributions. Linux Essential Commands – File system Concept – Standard Files – The Linux Security Model – Vi Editor – Partitions Creation .

#### **TEXT BOOK**

Silberschatz, Galvin, Gagne, Operating Systems Concepts, Sixth Edition, John Wiley & Sons, Inc., 2003.

#### REFERENCE BOOK

➤ Milan Milenkovic, *Operating Systems (Concepts and Design)*, Second Edition, Tata McGraw – Hill, 2001.

#### WEBLIOGRAPHY

- ➤ https://www.edx.org/course/computer-hardware-and-operating-systems
- https://edu.gcfglobal.org/en/computerbasics/understanding-operating-systems/1/
- ➤ https://whatis.techtarget.com/definition/operating-system-OS
- https://www.computerhope.com/jargon/o/os.htm
- ➤ https://www.geeksforgeeks.org/introduction-of-operating-system-set-1/
- > https://www.guru99.com/operating-system-tutorial.html

|     | Mapping |     |     |     |     |  |
|-----|---------|-----|-----|-----|-----|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |
| CO1 | Н       | Н   | Н   | M   | Н   |  |
| CO2 | Н       | Н   | Н   | L   | Н   |  |
| CO3 | Н       | M   | Н   | M   | Н   |  |
| CO4 | Н       | Н   | Н   | M   | Н   |  |
| CO5 | Н       | Н   | M   | Н   | L   |  |

H-High; M-Medium; L-Low
\*\*\*\*\*\*

## CORE XI PRACTICAL - V

## AUBCL5 - R PROGRAMMING

Hours: 6 Credits: 3

Semester : IV

#### Preamble

This course facilitates the students to acquire knowledge on basic concepts of R Programming to create wide range of applications.

#### Course Outcome

On successful completion of the course, the students will be able to

| СО  | Description of COs                                                                     | Blooms' Taxonomy Level   |
|-----|----------------------------------------------------------------------------------------|--------------------------|
| CO1 | Import and summarize data-sets in R                                                    | Knowledge (Level K1)     |
| CO2 | Review and manipulate and summarize data-sets in R                                     | Comprehension (Level K2) |
| CO3 | Identify online resources for R and import new function packages into the R workspace. | Comprehension(Level K2)  |
| CO4 | Demonstrate use of basic functions.                                                    | Application (Level K3)   |
| CO5 | Create and edit visualizations with R                                                  | Analysis (Level K4)      |
|     |                                                                                        | Synthesis(Level K5)      |

# **PROGRAM LIST**

- 1. To create a list containing Strings, numbers, vectors and a logical values
- 2. To add 10 to each elements of the first vector in a given list
- 3. To merge given two list into one list
- 4. To convert a given list into vector
- 5. To convert a given data frame to a list by rows
- 6. To count number of objects in a given list
- 7. To assign NULL to a given list elements

- 8. To convert given matrix to a list
- 9. To find all the elements in the given list that are not in the another list
- 10. To create a list named S containing sequence of 15 Capital letters starting form 'E'

## WEBLIOGRAPHY

- ➤ https://www.edx.org/course/r-programming-fundamentals
- http://www.r-project.org/about.html
- http://www.rstudio.com/
- http://www.tutorialspoint.com/r/index.htm
- ➤ https://www.coursera.org/learn/r-programming
- https://www.w3schools.com/r/default.asp

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | Н   | Н   | M   |
| CO2     | Н   | Н   | Н   | M   | Н   |
| CO3     | Н   | M   | Н   | Н   | Н   |
| CO4     | M   | Н   | Н   | Н   | M   |
| CO5     | Н   | M   | Н   | Н   | L   |

H-High; M-Medium; L-Low

# CORE XII PRACTICAL - VI

## AUBCL6 - PYTHON PROGRAMMING

Hours: 5 Credits: 3

Semester : IV

#### **Preamble**

This course helps the students to produce well designed programs using advanced concepts of python like regular expressions, exception handling, multithreading, web programming and database programming.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                        | Blooms' Taxonomy Level |
|-----|---------------------------------------------------------------------------|------------------------|
| CO1 | Implement various operators of Python                                     | Application(Level K3)  |
| CO2 | Develop basic python programs with I/O operations.                        | Application(Level K3)  |
| CO3 | Apply strings and lists in python.                                        | Analysis(Level K4)     |
| CO4 | Analyze the Python programs with variables, loop, functions and operators | Analysis(Level K4)     |
| CO5 | Develop python programs with files.                                       | Synthesis(Level K5)    |

## **PROGRAM LIST**

- 1. Exercises to implement File handling concept
- 2. Exercises to implement list
- 3. Exercises using Dictionary.
- 4. Exercises to perform set operations.
- 5. Exercises using object oriented concepts.

- 6. Exercises to perform operations using Regular expression.
- 7. Exercises using exceptional handling technique.
- 8. Exercises using multithreading.
- 9. Exercises to perform operations on Byte objects.
- 10. Create an application using python with database connectivity.

#### **WEBLIOGRAPHY**

- https://onlinecourses.nptel.ac.in/noc22\_cs26/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs21/preview
- http://www.ibiblio.org/g2swap/byteofpython/read/
- http://docs.python.org/3/tutorial/index.html
- ➤ http://interactivepython.org/courselib/static/pythonds.
- http://en.wikibooks.org/wiki/A Beginners Python Tutorial.
- http://www.python.org./

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | M   | Н   | M   |
| CO2     | Н   | Н   | M   | Н   | M   |
| CO3     | Н   | Н   | M   | Н   | M   |
| CO4     | Н   | L   | M   | M   | Н   |
| CO5     | Н   | M   | Н   | M   | Н   |

H-High; M-Medium; L-Low

# ALLIED IV

# AUBCA4 - COMPUTER BASED OPTIMIZATION TECHNIQUES

Hours: 5 Credits: 5

Semester : IV

#### Preamble

This course gives basic ideas about operation Research and solves the LPPs using various methods of operation Research.

#### Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                               | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------|--------------------------|
| CO1 | Understand the mathematical formulation of L.P.P | Comprehension (Level K2) |
| CO2 | Describe the concept of Operation Research.      | Comprehension (Level K2) |
| CO3 | Apply transportation and assignment problem to   | Application (Level K3)   |
|     | allocate resources.                              |                          |
| CO4 | Acquire the knowledge about networks and graph.  | Analysis (Level K4)      |
| CO5 | Validate network scheduling by PERT and CPM.     | Synthesis (Level K5)     |

#### **COURSE CONTENT**

#### **UNIT - I:**

**Operation Research:** Introduction – Origin and development of Operation Research - Nature and Features of Operation Research - Modelling in Operation Research - General Solution Methods For Operation Research Models - Scientific Methods in Operation Research – Methodology of Operation Research – Applications of Operation Research.

#### **UNIT - II:**

**Linear Programming Problem:** Introduction- Mathematical Formulation of the Problem - Graphical Solution Method -Some Exceptional Cases – General Linear Programming Problem-Canonical and Standard forms of LPP- The Simplex methods.

#### **UNIT - III:**

**Transportation Problem:** Introduction –General Transportation Problem- The Transportation Table-Duality in Transportation Problem- Loops in Transportation Problems- Formulation of the Transportation Problem- Solution of a TP – Finding an I.B.F.S – Test for Optimality- Degeneracy in TP- MODI Method – Some Exceptional Cases.

#### **UNIT - IV:**

**Assignment Problems:** Introduction- Definition of the Transportation Model- Mathematical Formulation of the Problem- The Assignment Methods — Unbalanced Assignment Models - Maximization case in AP - Travelling Salesman Problem.

#### **UNIT - V:**

Network Scheduling by PERT / CPM: Introduction – Network and Basic Components – Logical Sequencing – Rules of Network Construction – Critical Path Analysis – Probability considerations in PERT – Distinction between PERT and CPM.

#### **TEXT BOOK**

➤ Kanti swarup P.K Gupta, "Operations Research", 14<sup>th</sup> Edition, Manmohan Sultan Chand & Sons, 2000.

#### REFERENCE BOOKS

- ▶ P.K. Gupta & D.S. Hira, operations research, 7<sup>th</sup> Edition, S.Chand Publisher, 2015.
- > Ganapathy, Resource management techniques, 2019 Edition, ARS Publications, 2019.

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_mg30/preview
- https://onlinecourses.nptel.ac.in/noc21\_mg43/preview
- ➤ http://www.researchgate.net/publications/30640113\_computer\_based\_optimaization\_techniques
- http://ieeexplore.ieee.org/document/1127005
- http://www.optimizely.com/optimization-glossary/search/engine-optimization
- ➤ http://en.m.wikipedia.org/wiki/search\_engine\_optimization

2022-2023 onwards BCA APAC(W), Palani

|     | Mapping |     |     |     |     |  |
|-----|---------|-----|-----|-----|-----|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |
| CO1 | Н       | Н   | L   | Н   | Н   |  |
| CO2 | Н       | Н   | M   | Н   | Н   |  |
| CO3 | Н       | Н   | L   | Н   | M   |  |
| CO4 | Н       | Н   | M   | Н   | Н   |  |
| CO5 | Н       | Н   | Н   | Н   | Н   |  |

H-High; M-Medium; L-Low \*\*\*\*\*\*

# SKILL BASED COURSE - IV

## AUBCPM4 - PRINCIPLES OF MANAGEMENT

Hours: 2 Credits: 2

Semester : IV

## Preamble

This course imparts the fundamental knowledge and exposure the concepts, theories and practices in the field of management.

#### Course Outcome

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                                                   | Blooms' Taxonomy Level   |
|-----|----------------------------------------------------------------------------------------------------------------------|--------------------------|
| CO1 | Understand the concept of levels of management, objectives of management, process of planning, types of Organization | Knowledge (Level K1)     |
| 004 | and leadership quality.                                                                                              |                          |
| CO2 | Describe the concept of levels of management, objectives of                                                          | Comprehension (Level K2) |
|     | management, process of planning, types of Organization and                                                           |                          |
|     | leadership quality.                                                                                                  |                          |
| CO3 | Summarize the characteristics and situational theories of                                                            | Knowledge (Level K1)     |
|     | leadership.                                                                                                          | Comprehension (Level K2) |
| CO4 | Discuss the important factor for types of organization and                                                           | Comprehension(Level K2)  |
|     | responsibility of authorities.                                                                                       | Applications (Level K3)  |
| CO5 | Acquire the knowledge on efficient communication in                                                                  | Analysis (Level K4)      |
|     | management                                                                                                           |                          |

#### **COURSE CONTENT**

#### UNIT - I:

**Management:** Meaning & Definition – Principles of Management –Management Vs Administration – Functions of Management –Levels of Management

#### **UNIT - II:**

**Planning:** Meaning and Definition –Objectives – Importance – Advantages –Limitations – Kinds –Process of Planning – Methods of Planning

#### **UNIT - III:**

**Organization:** Meaning and Definition – Features – Principles– Process– Merits of Organization – Consequence of Poor Organization-Types of Organization.

#### **UNIT - IV:**

**Motivation:** Meaning and Definition – Characteristics – Theories of Motivation – Maslow's Need Hierarchy Theory. **Leadership:** Meaning and Definition – Characteristics– Functions of Leader – Leadership Styles – Theories of Leadership.

#### **UNIT - V:**

**Communication:** Meaning and Definition – Nature – Principles – Benefits – Elements – Importance of communication in management – channels or types – barriers to communication – guidelines for ensuring effective communication.

#### **TEXT BOOK**

S.Kathiresan and Dr.V.Radha, *Principles of Management*, Springer Publication, 2008.

## REFERENCE BOOK

➤ Meenakshi Gupta, *Principles of Management*, 1<sup>st</sup> Edition, Prentice Hall India Learning Private Limited, 2009.

#### WEBLIOGRAPHY

- ➤ http://www.edx.org
- ➤ http://openstax.org/details/books/priciples-management
- ➤ http://modernstates.org/course/principles-of-management
- ► http://courses.lumen.learning.com
- http://open.umn.edu/opentextbook/textbooks/693

BCA 2022-2023 onwards APAC(W), Palani

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | L   | Н   | Н   |
| CO2     | Н   | Н   | M   | Н   | Н   |
| CO3     | Н   | Н   | L   | Н   | M   |
| CO4     | Н   | Н   | M   | Н   | Н   |
| CO5     | Н   | Н   | Н   | Н   | Н   |

H-High; M-Medium; L-Low \*\*\*\*\*\*

## CORE XIII

## AUBCC7 - RELATIONAL DATABASE MANAGEMENT SYSTEM

Hours: 5 Credits: 5

Semester : V

## Preamble

This course facilitates the students to know the Core concepts of RDBMS and helps the students to create and connect the multiple tables and to have knowledge on Normalization Techniques.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                  | Blooms' Taxonomy Level   |  |
|-----|-----------------------------------------------------|--------------------------|--|
| CO1 | Remember the basic concepts and applications of     | Knowledge(Level K1)      |  |
|     | database system                                     |                          |  |
| CO2 | Understand the basic concepts and applications of   | Knowledge(Level K1)      |  |
|     | database system                                     | Comprehension (Level K2) |  |
| CO3 | Get the idea about various data models which        | Comprehension (Level K2) |  |
|     | describes the structure of database                 |                          |  |
| CO4 | Design principles using ER models and Normalization | Comprehension (Level K2) |  |
|     | approach                                            | Applications(Level K3)   |  |
| CO5 | Interpret SQL interface of a RDBMS package to       | Comprehension (Level K2) |  |
|     | create, secure, maintain and query a database and   | Analysis(Level K4)       |  |
|     | PL/SQL programming using Triggers and Cursors       |                          |  |

#### **COURSE CONTENT**

#### **UNIT - I:**

Introduction: Database System Applications – Purpose of Database Systems – View of Data – Database Languages – Transaction Management – Database users and Administrators – Overall System Structure.

#### **UNIT - II:**

**Relational Model:** Entity – Relationship Model: Basic Concepts – Design Issues – Mapping cardinalities – Keys – E – R Diagrams – Weak entity sets – Extended E – R feature

#### **UNIT - III:**

**Data Normalization:** Pitfalls in Relational Database Design- Entity – Decomposition – Functional Dependencies – Normalization – First Normal Form – Second Normal Form – Third Normal Form – Boyce – Codd Normal Form – Fourth Normal Form – Fifth Normal Form – Denormalization

#### **UNIT - IV:**

PL/SQL: A Programming Language: History – Fundamentals – Block Structure – Comments
 – Data Types – Other Data Types – Declaration – Assignment operation – Bind variables – Substitution
 Variables – Printing – Arithmetic Operators.

**Control Structures and Embedded SQL**: Control Structures – Nested Blocks – SQL in PL/SQL – Data Manipulation – Transaction Control statements.

#### **UNIT - V:**

**PL/SQL Cursors and Exceptions:** Cursors – Implicit & Explicit Cursors and Attributes – Cursor FOR loops – SELECT...FOR UPDATE – WHERE CURRENT OF clause – Cursor with Parameters – Cursor Variables – Exceptions – Types of Exceptions (Predefined Oracle Server Exceptions, User Defined Exceptions).

PL/SQL Composite Data Types: Records – Tables – arrays. Named Blocks: Triggers

#### **TEXT BOOKS**

- ➤ Abraham Silberschatz, Henry F.Korth, S.Sudarshan *Database System Concepts*, TMH 5<sup>th</sup> Edition (*UNIT s* − *I*, *II*, *III Chapter* − 7(7.1,7.2,7.3), 2002.
- ➤ Alexis Leon, Mathews Leon, *Database Management Systems (UNIT III Chapter -11)*, Vikas Publications, 2002.
- ➤ Nilesh Shah, *Database Systems Using Oracle*, 2<sup>nd</sup> edition, PHI, 2015. (UNIT IV: Chapter 10 & 11 UNIT V Chapter 12,13 & 14)

#### REFERENCE BOOK

➤ Gerald V. Post, *Database Management Systems*, 3<sup>rd</sup> Edition, TMH, 2008.

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs51/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs04/preview
- ➤ http://www.javapoint.com/dbms-tutorialIntroductionToDataStructure
- http://www.tutorialspoint.com/dbms/index.htm
- > http://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1
- ➤ http://searchsqlserver.techtarget.com/definition/database-management-system

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | M   | Н   | Н   | Н   | L   |
| CO2     | Н   | M   | Н   | Н   | M   |
| CO3     | Н   | Н   | M   | Н   | M   |
| CO4     | Н   | M   | Н   | Н   | Н   |
| CO5     | L   | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

# CORE XIV PRACTICAL - VII

## AUBCL7 - DOT NET PROGRAMMING

Hours: 6 Credits: 4

Semester : V

## Preamble

This course helps the students to acquire the knowledge on .NET framework and to develop web based and application based software.

### Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                             | Blooms' Taxonomy Level   |  |
|-----|------------------------------------------------|--------------------------|--|
| CO1 | Demonstrate the database connectivity with     | Knowledge(Level K1)      |  |
|     | application programming.                       |                          |  |
| CO2 | Design and execute different kinds of tasks in | Comprehension (Level K2) |  |
|     | real time application.                         |                          |  |
| CO3 | Analyze the Dot Net programs with variables,   | Analysis(Level K4)       |  |
|     | loop, functions and operators                  |                          |  |
| CO4 | Develop basic Dot Net programs with            | Comprehension (Level K2) |  |
|     | Database connectivity                          | Applications(Level K3)   |  |
| CO5 | Validate the results for the given input data. | Applications(Level K3)   |  |
|     |                                                |                          |  |

# **PROGRAM LIST**

- 1. Write a program to find a grade of students.
- 2. Write a program to find factorial of given number using functions.
- 3. Write a program to arrange names in alphabetical order.
- 4. Write a program to display the user information.(personal details)

- 5. Calculator.
- 6. Notepad
- 7. Employee Details.
- 8. Hospital Management system.
- 9. Sales Transaction System.
- 10. News Paper Vendor Details

#### WEBLIOGRAPHY

- ➤ https://www.edx.org
- http://www.javapoint.com/vb-net
- ➤ http://www.tutorialspoint.com/v.net/index.htm
- http://www.vbtutor.net/index.php
- http://www.guru99.com/vb-net-tutorial.html

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | M   | Н   | L   | Н   | M   |
| CO2     | Н   | Н   | M   | Н   | Н   |
| CO3     | Н   | Н   | M   | Н   | M   |
| CO4     | Н   | M   | M   | Н   | Н   |
| CO5     | Н   | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

# CORE XV PRACTICAL - VIII

## AUBCL8 - RELATIONAL DATABASE MANAGEMENT SYSTEM

Hours: 5 Credits: 3

Semester : V

## Preamble

This course facilitates the students to know the Core concepts of RDBMS and helps the students to create and connect the multiple tables and to have knowledge on Normalization Techniques.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                              | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------|--------------------------|
| CO1 | Explain various SQL Commands                    | Comprehension (Level K2) |
|     |                                                 | Applications(Level K3)   |
| CO2 | Write SQL queries to user specification         | Comprehension (Level K2) |
|     |                                                 | Applications(Level K3)   |
| CO3 | Design database schema considering              | Comprehension (Level K2) |
|     | normalization and relationships within database | Applications(Level K3)   |
| CO4 | Develop PL/SQL Programs                         | Comprehension (Level K2) |
|     |                                                 | Applications(Level K3)   |
| CO5 | Develop triggers, procedures and Cursors        | Applications(Level K3)   |
|     |                                                 | Analysis(Level K4)       |

# **PROGRAM LIST**

- 1. DDL, DML, DCL, TCL Commands
- 2. Logical, Comparison, Conjunctive & Arithmetic Operators.

#### 3. Retrieving rows with Characters functions:

- o CONCAT (Concatenation)
- o REPLACE
- o SUBSTR (Substring)
- o LENGTH

#### 4. Retrieving rows with Aggregate functions:

- o GROUP BY
- o HAVING

## 5. Retrieving rows with date functions & number function:

- o SYSDATE
- o ABS, FLOOR, CEIL, ROUND, POWER

#### 6. JOINS:

- o Union, Intersection & Union all
- Simple Join
- o Self-Join
- Outer Join

#### 7. CONSTRAINTS:

- o Domain Integrity (Not Null, Check)
- o Entity Integrity (Unique & Primary Key)
- Referential Integrity (Foreign Key)
- 8. VIEW: PL/SQL
- 9. PL/SQL Programs with Control Structures
- 10. PL/SQL Programs with Exception Handling
- 11. PL/SQL Programs with Cursors
- 12. Creating & Calling Procedures

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs51/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs04/preview
- ➤ http://www.javapoint.com/dbms-tutorialIntroductionToDataStructure
- http://www.tutorialspoint.com/dbms/index.htm
- http://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1
- http://searchsqlserver.techtarget.com/definition/database-management-system

BCA 2022-2023 onwards APAC(W), Palani

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | M       | Н   | Н   | Н   | Н   |  |  |
| CO2 | Н       | M   | Н   | Н   | M   |  |  |
| CO3 | Н       | Н   | M   | Н   | Н   |  |  |
| CO4 | Н       | M   | Н   | Н   | Н   |  |  |
| CO5 | L       | Н   | Н   | M   | Н   |  |  |

 $\begin{array}{c} \text{H-High; M-Medium; L-Low} \\ ******* \end{array}$ 

## **ELECTIVE 1.1**

## AUBCE1 - SOFTWARE ENGINEERING

Hours: 6 Credits: 5

Semester : V

## Preamble

These courses facilitate the students to know the concept of computer based system and products and to present the role of software, system analysis, design concepts, testing methods and strategies.

#### Course Outcome

On successful completion of the course, the student will be able to

| CO  | Description of COs                                     | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------------|--------------------------|
| CO1 | Recollect the basic terminologies and requirement for  | Knowledge (Level K1)     |
|     | software development.                                  |                          |
| CO2 | Comprehend the core concepts of life cycle models.     | Knowledge (Level K1)     |
|     |                                                        | Comprehension (Level K2) |
| CO3 | Figure out the Data flow Diagram.                      | Application(Level K3)    |
| CO4 | Apply the cost & size estimation Techniques and        | Comprehension (Level K2) |
|     | maintenance cost.                                      | Analysis (Level K4)      |
| CO5 | Evaluate the software through various testing methods. | Synthesis (Level K5)     |
|     |                                                        |                          |

#### COURSE CONTENT

**UNIT-I:** Introduction: Introduction to Software engineering some definitions – some size factors – quality to productivity factors – managerial Issue. Planning a software project: defining the problems developing a solution strategy – planning on organization structure – other planning activities.

**UNIT-II:** Cost estimation Software cost estimation: Software cost factors – Software cost estimation techniques – staffing – level estimation – estimative software maintenance costs.

**UNIT-III:** Requirements Software requirements, definition: the software requirements specifications – formal specification techniques – language and processors for requirements specification.

**UNIT-IV:** Design Software Design: fundamentals Descartes concepts – Modules and Modularizing criteria -Design techniques – detailed design considerations – real time and distributed system design – test plan – mile – stones walk through and inspection – design guide line.

**UNIT-V:** Verification and validation Verification and validation techniques: Quality Assurance – static analysis – symbolic execution – unit testing and debugging system - testing formal verification. Software maintenance: enhancing maintainability during developments managerial aspects of software maintenance – configuration management – sources code metrics – other maintenance tools and techniques.

#### TEXT BOOK:

Richard E. Fairley, Software Engineering Concepts, McGraw Hill Pvt Ltd, 2001.

#### **REFERENCE BOOKS:**

- Roger S, Pressman Software Engineering, A Practitioner's Approach,. 2014.
- Pankaj Jalote, An Integrated Approach to Software Engineering Narosa, 3<sup>rd</sup> Edition, 2005

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs39/preview
- https://onlinecourses.nptel.ac.in/noc22\_cs106/preview
- > https://www.edx.org/course/software-development-fundamentals
- http://www.edx.org
- http://www.geektonight.com
- ➤ http://ecomputernotes.com
- http://www.techtarget.com
- ➤ http://slideshare.net

| Mapping |     |     |     |     |     |
|---------|-----|-----|-----|-----|-----|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |
| CO1     | Н   | Н   | Н   | M   | Н   |
| CO2     | Н   | Н   | Н   | M   | Н   |
| CO3     | Н   | Н   | Н   | Н   | Н   |
| CO4     | Н   | Н   | M   | M   | Н   |
| CO5     | Н   | Н   | Н   | M   | Н   |

H-High; M-Medium; L-Low

\*\*\*\*\*

# **ELECTIVE 1.2**

## AUBCE1 - CLOUD COMPUTING

Hours: 6 Credits: 5

Semester : V

## Preamble

This course enables the students to learn and understand the fundamental concepts of Cloud and its services, and helps the students to understand the service oriented architecture in cloud database.

#### Course Outcomes

On successful completion of the course, the student will be able to

| CO  | Description of COs                            | Blooms' Taxonomy Level   |
|-----|-----------------------------------------------|--------------------------|
| CO1 | Define cloud computing and get the idea about | Knowledge(Level K1)      |
|     | cloud architecture                            |                          |
| CO2 | Understand different cloud services and       | Comprehension (Level K2) |
|     | architecture                                  |                          |
| CO3 | Applications of Cloud Services and security   | Applications(Level K3)   |
|     |                                               | Analysis(Level K4)       |
| CO4 | Analyze the cloud mail services               | Analysis(Level K4)       |
| CO5 | Evaluate various Cloud Services and security  | Synthesis(Level K5)      |

#### **COURSE CONTENT**

## **UNIT - I:**

Introduction – Definition of Cloud – Cloud types – Characteristics of Cloud - Cloud computing obstacles – Behavioral factors relating to Cloud adoption – Measuring Cloud computing costs - Cloud architecture: Cloud computing stack – Composability – Infrastructure – Platforms – Virtual appliances – Communication protocol – Applications.

#### **UNIT - II:**

Cloud Services: IaaS – PaaS – SaaS – IdaaS – CaaS - Abstraction and Virtualization:

Virtualization technologies – Load balancing – Capacity planning: Baseline and Metrics –

Measurements – System metrics – Load testing – Resource ceilings – Servers and Instance types –

Network Capacity – Scaling.

## **UNIT - III:**

Exploring Cloud Infrastructures: Administrating the clouds – Management responsibilities – Life cycle management - Cloud management products – Cloud management standards – Cloud Security: Securing the Cloud – Securing the Data – Establishing identity and presence.

#### **UNIT - IV:**

Service oriented architecture – Introduction – SOA communications – Managing and Monitoring SOA – Relating SOA and Cloud - Applications to the cloud : Functionality mapping – Applications attributes – Cloud service attributes – System abstraction – Cloud bursting – Applications and Cloud APIs .

# UNIT - V:

Cloud Storage: Measuring digital universe – Provisioning cloud storage – Cloud backup solutions – Cloud storage interoperability - Mobile Web service : Service types – Service discovery – SMS – Protocols – Synchronization

#### **TEXT BOOK**

Barrie Sosinsky, Cloud Computing Bible, Wiley Publications, 2011 (Unit I to V)

#### REFERENCE BOOKS

- Rountree, Castrillo, *The Basics of Cloud Computing Understanding the Fundamentals of Cloud Computing in Theory and Practice*, First Edition, Syngress Publication, 2013
- ➤ Michael Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing, 2008
- > Srinivasan. S, Cloud Computing Basics, Springer, 2013

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs20/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs14/preview
- http://en.m.wikipedia.org/wiki/cloud\_computing
- ► http://cloud.google.com
- ➤ http://www.invetopedia.com/trems/c/cloud-computing.asp
- http://ieeexplore.ieee.org/document/6149278

|     | Mapping |                     |   |   |   |  |  |  |  |
|-----|---------|---------------------|---|---|---|--|--|--|--|
|     | PO1     | PO1 PO2 PO3 PO4 PO5 |   |   |   |  |  |  |  |
| CO1 | M       | Н                   | Н | Н | Н |  |  |  |  |
| CO2 | Н       | M                   | M | Н | M |  |  |  |  |
| CO3 | Н       | Н                   | M | M | Н |  |  |  |  |
| CO4 | Н       | M                   | Н | Н | Н |  |  |  |  |
| CO5 | L       | Н                   | M | Н | Н |  |  |  |  |

H-High; M-Medium; L-Low
\*\*\*\*\*\*

# **ELECTIVE 2.1**

# AUBCE2 - DATA MINING TECHNIQUES

Hours: 6 Credits: 5

Semester : V

## Preamble

This course provides the fundamentals of data warehousing, Data mining Concepts and Data Mining Techniques.

## Course Outcomes

On successful completion of the course the students will be able to

| CO  | Description of COs                            | Blooms' Taxonomy Level            |
|-----|-----------------------------------------------|-----------------------------------|
| CO1 | Understand the basic Concepts of data mining  | <b>K2</b> – Comprehension         |
|     | and data warehousing                          | (Level K2)                        |
| CO2 | Analyze various data mining techniques like   | <b>K4</b> – Analysis(Level K4)    |
|     | classifications, clustering, association rule |                                   |
|     | mining, prediction and related algorithm      |                                   |
| CO3 | Choose appropriate data mining techniques to  | <b>K3</b> – Application(Level K3) |
|     | carry out simple data mining tasks            | <b>K4</b> – Analysis(Level K4)    |
| CO4 | Develop data mining algorithms to store       | <b>K5</b> – Synthesis(Level K5)   |
|     | heterogeneous data                            |                                   |
| CO5 | Evaluate various data mining concepts and     | <b>K5</b> – Synthesis(Level K5)   |
|     | techniques.                                   |                                   |

## **COURSE CONTENT**

## UNIT - I:

**Data Warehousing**: Introduction – Definition – Multidimensional Data Model - OLAP Operations – Warehouse Schema – Data warehousing Architecture – Metadata – OLAP Engine - Data Warehouse Backend Process.

#### **UNIT - II:**

**Data Mining**: Definition – Comparison with other fields – DM Techniques – Issues Application Areas.

#### **UNIT - III:**

**Association Rules:** Methods – A Priori algorithm – Partition Algorithm – Pincer-Search Algorithm – Border Algorithm – Generalized Association Rules with Item constraints.

#### **UNIT - IV:**

Clustering Techniques: Clustering Paradigms – Partitioning Algorithms – CLARA – CLARANS- Hierarchical Clustering – DBSCAN – Categorical Clustering Algorithms – STIRR.

Decision Trees: Tree Construction Principle – Best Split – Splitting Indices – Splitting Criteria CART – ID3.

#### UNIT - V:

**Web Mining**: Introduction – Web Content Mining – Web Structure Mining – Web Usage Mining – Text Mining – Hierarchy of Categories – Text Clustering.

#### **TEXT BOOK:**

Arun K. Pujari, *Data Mining Techniques*, Universities Press, 2001.

#### **REFERENCE BOOKS:**

- ➤ Jewie Han, Michelins Kamber, *Data Mining: Concepts and Techniques*, 3<sup>rd</sup> Edition, 2011.
- ➤ Pang-Ning Tan, Michael Steinbach, Vipin Kumar, *Introduction to Data Mining*, Pearson Education, 2007.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs11/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs06/preview
- ➤ http://thesai.org/downloads/data\_mining\_web\_data\_mining\_techniques
- > http://en.m.wikipedia.org/wiki/datamining
- http://www.analyticsvidhya.com/introduction\_to\_clustering\_and\_different\_methods\_of\_ clustering
- > http://www.datanovia.com
- http://arxiv.org/avs/1801.10123

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | M   | M   | Н   | Н   |  |  |
| CO2 | Н       | Н   | M   | M   | Н   |  |  |
| CO3 | Н       | Н   | Н   | M   | Н   |  |  |
| CO4 | Н       | M   | Н   | Н   | Н   |  |  |
| CO5 | Н       | Н   | Н   | Н   | L   |  |  |

H-High; M-Medium; L-Low
\*\*\*\*\*\*

#### **ELECTIVE 2.2**

## AUBCE2 - INFORMATION SECURITY

Hours: 6 Credits: 5

Semester : V

#### Preamble

This Course enables the student to understand various methodologies available for securing information and to learn about various Security Models.

#### Course Outcomes

On successful completion of the course, the student will be able to

| CO  | Description of COs                                      | Blooms' Taxonomy Level   |
|-----|---------------------------------------------------------|--------------------------|
| CO1 | Get an idea about Information Security Basis, Security  | Knowledge(Level K1)      |
|     | Investigation, Security Analysis, Security Models and   |                          |
|     | Security Physical Design                                |                          |
| CO2 | Understand Security Investigation and Security Analysis | Comprehension (Level K2) |
|     |                                                         | Applications(Level K3)   |
| CO3 | Analyze Security Models                                 | Analysis(Level K4)       |
| CO4 | Figure out the physical design of the security.         | Analysis(Level K4)       |
| CO5 | Understand the security threads and attacks             | Synthesis(Level K5)      |

#### **COURSE CONTENT**

## UNIT - I:

**Information Security Basics:** Introduction -History, What is Information Security?, Critical Characteristics of Information, NSTISSC Security Model, Components of an Information System, Securing the Components, Balancing Security and Access, The SDLC, The Security SDLC

#### **UNIT - II:**

**Security Investigation:** Security Investigation - Need for Security, Business Needs, Threats, Attacks, Legal, Ethical and Professional Issues.

#### **UNIT - III:**

**Security Analysis:** Security Analysis-Risk Management: Identifying and Assessing Risk, Assessing and Controlling Risk.

## **UNIT - IV:**

**Security Models:** Logical Design-Blueprint for Security, Information Security Policy, Standards and Practices, ISO 17799/BS 7799, NIST Models, VISA International Security Model, Design of Security Architecture, Planning for Continuity.

#### **UNIT - V:**

**Security Physical Design:** Physical Design-Security Technology, IDS, Scanning and Analysis Tools, Cryptography, Access Control Devices, Physical Security, Security and Personnel.

#### **TEXT BOOK**

➤ Michael E Whitman and Herbert J Mattord, "Principles of Information Security", 4<sup>th</sup> Edition, Vikas Publishing House, New Delhi, 2003.

#### REFERENCE BOOK

➤ William Stallings, *Cryptography and Network Security Principles and Practices*, 4<sup>th</sup> Edition, Pearson Prentice Hall, 2006.

#### WEBILIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs23/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs30/preview
- http://securityscorecard.com/blog/stop-10-information-security-websites-to-follow
- ➤ http://www.catonetworks.com/blog/stop-15network security-websites/
- ➤ http://developers.google.com/search/docs/advanced/security/https
- ➤ http://www.nativeintelligence.com/resources/cyber-security-links/

|     | Mapping |     |     |     |     |  |
|-----|---------|-----|-----|-----|-----|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |
| CO1 | Н       | Н   | Н   | Н   | Н   |  |
| CO2 | Н       | Н   | M   | Н   | L   |  |
| CO3 | Н       | M   | M   | Н   | Н   |  |
| CO4 | M       | Н   | Н   | L   | M   |  |
| CO5 | Н       | Н   | Н   | Н   | Н   |  |

H-High; M-Medium; L-Low

\*\*\*\*

# SKILL BASED COURSE - V

## AUBCNA5 - NUMERICAL APTITUDE

Hours : 2 Credits : 2

Semester : V

# Preamble

This course helps the students to improve their employability skills.

## **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                                                                         | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| CO1 | Recollect and describe the basic concepts of logical                                                                                       | Knowledge (Level K1)     |
|     | reasoning                                                                                                                                  | Comprehension (Level K2) |
| CO2 | Discuss problem solving and reasoning ability.                                                                                             | Comprehension (Level K2) |
| CO3 | Demonstrate various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions. | Application(Level K3)    |
| CO4 | Apply various principles involved in solving mathematical problems and thereby reducing the time taken for performing job functions.       | Application(Level K3)    |
| CO5 | Critically evaluate various real life situations by resorting to analysis of key issues and factors.                                       | Analysis (Level K4)      |

#### **COURSE CONTENT**

## UNIT - I:

Operations on Numbers – H.C.F & L.C.M of Numbers (Solved Examples).

# **UNIT - II:**

Problems on Numbers- Problems on Ages — Problems on Trains (Solved Examples )

#### **UNIT - III:**

Percentage – Profit & Loss – Ratio & Proposition (Solved Examples ).

#### **UNIT - IV:**

Time & Work – Time & Distance (Solved Examples)

#### **UNIT - V:**

Simple Interest-Compound Interest-Permutations & Combinations

#### **TEXT BOOK**

R.S.Aggarwal, *Quantitative Aptitude for Competitive Examination*, Revised Edition, S.Chand, 2017.

#### REFERENCE BOOK

➤ KJS Khurana, Rajeev Markanday, "Numerical Ability", 2<sup>nd</sup> Edition, S.Chand,2020.

#### WEBLIOGRAPHY

- https://www.edx.org
- > http://practiceaptitudetests.com
- > http://aptitude-test.com
- http://www.investopedia.com
- http://www.cuemath.com
- ➤ http://www.mathsisfun.com
- http://www.math-only-math.com

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | Н   | M   | Н   | M   |  |
| CO2     | Н   | M   | Н   | Н   | Н   |  |
| CO3     | Н   | Н   | L   | Н   | Н   |  |
| CO4     | Н   | Н   | M   | L   | Н   |  |
| CO5     | Н   | M   | Н   | Н   | L   |  |

H-High; M-Medium; L-Low

# CORE XVI

## AUBCC8 - COMPUTER NETWORKS

Hours: 6 Credits: 4

Semester : VI

#### **Preamble**

This Course imparts knowledge on network concepts like layers wireless concepts, transmission and security .It give knowledge on networking technologies like broadband and Bluetooth.

#### **Course Outcomes**

On successful completion of the course, the student will be able to

| CO  | Description of COs                                                           | Blooms' Taxonomy Level   |
|-----|------------------------------------------------------------------------------|--------------------------|
| CO1 | Recall the networking concepts, Transmission media and                       | Knowledge (Level K1)     |
|     | OSI layers of Network                                                        | Comprehension (Level K2) |
| CO2 | Compare OSI & TCP/IP models                                                  | Knowledge (Level K1)     |
|     |                                                                              | Comprehension (Level K2) |
| CO3 | Deploy the elementary Data link protocols                                    | Application (Level K3)   |
| CO4 | Interpret various Routing algorithms                                         | Application (Level K3)   |
|     |                                                                              | Analysis (Level K4)      |
| CO5 | Review transport service and Transmission control protocol like DNS, E-mail. | Synthesis(Level K5)      |

#### **COURSE CONTENT**

#### **UNIT-I:**

**Introduction:** Uses of Computer Networks – Network Hardware: LAN- MAN – WAN-Wireless Networks –Network Software – Reference Models: OSI – TCP/IP- Comparison of OSI and TCP/IP.

#### **UNIT-II:**

Physical Layer: Guided Transmission Media: Magnetic Media – Twisted Pair – Coaxial Cable
 Fiber Optics – Wireless Transmission: Electromagnetic Spectrum – Radio Transmission – Microwave – Infrared and Millimeter – Light wave Transmission – Telephone Network: Structure of the Telephone System - Switching - Communication Satellites.

#### **UNIT-III:**

**Data Link Layer**: Services Provided to the Network Layer- Framing- Error Control – Flow Control- Error Detection and Correction - Elementary Data Link Protocols: An Unrestricted Simplex Protocol- A Simplex Stop-and-Wait Protocol- A Simplex Protocol for a Noisy Channel- Sliding Window Protocols: A One-Bit Sliding Window Protocol- A Protocol Using Go Back N- A Protocol Using Selective Repeat.

#### **UNIT-IV:**

**Network Layer:** Network Layer Design Issues- Routing Algorithms: The Optimality Principle-Shortest Path Routing- Flooding- Distance Vector Routing- Link State Routing- Hierarchical Routing-Routing for mobile Hosts - Broadcast Routing- Multicast Routing.

#### **UNIT-V:**

**Transport Layer**: The Transport Service: Services Provided to the Upper Layers-Transport Service Primitives- Elements of Transport Protocols: Addressing- Connection Establishment-Connection Release- Flow Control and Buffering -Multiplexing. **Application Layer:** Electronic Mail: Architecture and Services.

**Cyber Security:** Introduction Cyber Crime – Malware and its types- Kinds of Cyber Crime.

#### **TEXT BOOK**

- Andrew S. Tanenbawm, *Computer Network*, 5<sup>th</sup> Edition, PHI,1996.
- > Dr. Jeetendra Pande, "Introduction to Cyber Security", Uttarakhand Open University, 2017.

#### REFERENCE BOOK

➤ Behrouz A. Forouzan, *Data Communications and Networking*, 4<sup>th</sup> Edition, TMH, 2006.

#### **WEBLIOGRAPHY**

- https://onlinecourses.nptel.ac.in/noc22\_cs19/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs18/preview
- ➤ https://www.edx.org/microbachelors/nyux-cybersecurity-fundamentals
- https://en.wikipedia.org/wiki/
- https://www.researchgate.net/publication/291762312\_Secure\_elearning\_and cryptography
- > https://www.irjet.net/archives/V5/i1/IRJET-V5I195.pd
- www.coursera.org/
- https://nptel.ac.in/courses/106/105/106105081/

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | Н   | M   | Н   | Н   |  |
| CO2     | Н   | M   | Н   | M   | Н   |  |
| CO3     | Н   | Н   | M   | M   | Н   |  |
| CO4     | Н   | Н   | M   | M   | Н   |  |
| CO5     | Н   | Н   | M   | Н   | L   |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE XVII

## AUBCC9 - COMPUTER GRAPHICS

Hours: 5 Credits: 4

Semester : VI

## Preamble

This course offers Concepts on basic Graphical Techniques and learns 2D and 3D Transformations.

#### Course Outcomes

On successful completion of the course, the student will be able to

| CO  | Description of COs                                 | Blooms' Taxonomy Level |
|-----|----------------------------------------------------|------------------------|
| CO1 | List the display devices and recognize the Viewing | Knowledge(Level K1)    |
|     | and clipping algorithms.                           |                        |
| CO2 | Have a broad knowledge about the overview of       | Comprehend(Level K2)   |
|     | Graphics System.                                   |                        |
| CO3 | Describe the attributes of output primitives and   | Comprehend(Level K2)   |
|     | geometric Transformation.                          |                        |
| CO4 | Demonstrate the algorithms for drawing lines &     | Applications(Level K3) |
|     | circle.                                            | Synthesis (Level K5)   |
| CO5 | Analyze the 2D and 3D viewing and clipping         | Analysis(Level K4)     |
|     | algorithms.                                        |                        |

#### **COURSE CONTENT**

### **UNIT - I:**

**Video Display Devices:** Refresh Cathode Ray tubes – Raster Scan Displays – Random Scan displays – Color CRT Monitors – Raster Scan System – Random Scan System.

#### **UNIT - II:**

**Output Primitives**: Points and Lines – Line –Drawing Algorithms – Loading frame Buffer – Line function – Circle – Generating Algorithms.

#### **UNIT - III:**

**Attributes of Output Primitives**: Line Attributes – Curve Attributes – Color and Grayscale Levels – Area – Fill Attributes – Character Attributes.

#### **UNIT - IV:**

**Geometric Transformations**: Basic Transformations – Matrix Representations – Composite Transformations – Other Transformations

#### UNIT - V:

**Viewing**: The Viewing Pipeline – Viewing Co – ordinate Reference Frame – Window – to – Viewport Co – ordinate Transformation – 2D Viewing Functions – **Clipping Operations**: Point Clipping – Line Clipping : Cohen – Sutherland Line Clipping , Liang – Barsky Line Clipping – Curve Clipping – Text Clipping.

#### TEXT BOOK

➤ Donald Hearn, M.Pauline Baker, *Computer Graphics* - 2<sup>nd</sup> Edition, Pearson Education, 2007.

#### REFERENCE BOOK

➤ Foley, VanDam, Feiner, and hughes, *Computer graphics: principles and practice*, 3<sup>rd</sup> edition, Pearson Education, 2013.

#### **WEBLIOGRAPHY**

- https://www.edx.org/course/computer-graphics-2
- http://www.tutorialandexample.com
- http://webeduclick.com/display-devices/
- ► http://slideshare.net
- ➤ http://www.brainkart.com
- ➤ http://cgwithsuman.blogspot.com

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | Н   | L   | M   |  |  |
| CO2 | Н       | L   | Н   | M   | Н   |  |  |
| CO3 | Н       | Н   | Н   | Н   | M   |  |  |
| CO4 | M       | Н   | Н   | M   | Н   |  |  |
| CO5 | Н       | Н   | M   | Н   | L   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## CORE XVIII

## AUBCPR - PROJECT WORK

Hours: 7 Credits: 5

Semester : VI

## Preamble

This course motivate the Students to work in emerging/latest technologies, help the students to develop ability, to apply theoretical and practical tools/techniques to solve real life problems related to industry, academic institutions and research laboratories.

#### Course Outcomes

On successful completion of the course, the student will be able to

| CO  | Description of Cos                                     | Blooms' Taxonomy Level   |
|-----|--------------------------------------------------------|--------------------------|
| CO1 | Understand the problem.                                | Comprehension (Level K2) |
| CO2 | Implement & execute the real time application.         | Application(Level K3)    |
| CO3 | Apply& execute the real time application.              | Application(Level K3)    |
| CO4 | Analyze various testing methods.                       | Analysis (Level K4)      |
| CO5 | Verify the expected results in real time applications. | Synthesis (Level K5)     |

#### **COURSE CONTENT**

The project is of 7 hours/week for one (Semester VI) semester duration and a student is expected to do planning, analyzing, designing, coding, and implementing the project. The initiation of project should be with the project proposal. The synopsis approval will be given by the project guides.

The project proposal should include the following:

- Title
- Objectives

- Details of modules and process logic
- Limitations of the project
- Tools/Platforms, Languages to be used
- Sample Coding and Screenshots
- Conclusion

For the project work, the guide (internal) evaluate the work for 40 marks based on the performance of the candidates during the development of the project and the external examiner will evaluate the project work for 60 marks.

The Project work should be either an individual one or group of not more than two members.

#### WEBLIOGRAPHY

- https://www.edx.org/learn/project-based-learning
- http://en.m.wikipedis.org/wiki/visual\_basic \_.net
- http://stackoverflow.com/questions/436605/vb-net-how-to-reference-vv-net-module
- http://www.codeproject.com/articles/14003/building-websites-with-vb-net
- ➤ http://code .visual studio.com/docs
- http://docs.microsoft.com/en-us-visual studio/ide/solutions-and-projects-in-visual-studio

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | M   | Н   | Н   | Н   | Н   |  |
| CO2     | Н   | Н   | Н   | Н   | Н   |  |
| CO3     | Н   | Н   | Н   | Н   | M   |  |
| CO4     | Н   | Н   | M   | Н   | M   |  |
| CO5     | Н   | M   | Н   | L   | Н   |  |

H-High; M-Medium; L-Low

## **ELECTIVE 3.1**

## AUBCE3 - BIG DATA ANALYTICS

Hours: 6 Credits: 5

Semester : VI

# Preamble

This course offers knowledge about concepts and challenge of big data. It also the helps students to acquire knowledge about Hadoop, MapReduce, Pig and Hive technology.

## **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                                                                    | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------------------------------------------------------------|--------------------------|
| CO1 | Recall and Understand the concept of Big data techniques, environment, framework and Hadoop ecosystem | Knowledge(Level K1)      |
| CO2 | Apply Statistical data analysis and tools to manage                                                   | Comprehension (Level K2) |
|     | and analyze the big data                                                                              | Applications(Level K3)   |
| CO3 | Analyze Hadoop components and their uses for big                                                      | Analysis(Level K4)       |
|     | data processing                                                                                       |                          |
| CO4 | Examine the impact of big data for business                                                           | Analysis(Level K4)       |
|     | decisions and strategy                                                                                |                          |
| CO5 | Manage large-scale analytics tools to solve some                                                      | Synthesis(Level K5)      |
|     | open big data problems                                                                                |                          |

## **COURSE CONTENT**

#### **UNIT-I:**

**OVERVIEW OF BIG DATA:** Defining Big Data-Big Data Types –Big Data Types-Analytics-Industry-Examples of Big Data-Big Data and Data Risk-Big Data Technologies-Benefits of Big Data.

#### **UNIT-II:**

**BASICS OF HADOOP:** Big Data Hadoop-Hadoop Architecture-Main Components of Hadoop Framework-Analysing Big Data with Hadoop-Benefits of Distributed Applications-Hadoop Distributed File system-Advantages of Hadoop-Ten Big Hadoop Platforms.

#### **UNIT-III:**

**NoSQL DATABASES:** NoSQL Data Management-Typesw of NoSQL Databases-Query Model for Big Data-Benefits of NoSQL-MongoDB-Advantages of MongoDB over RDBMS-Replication in MongoDB.

#### **UNIT-IV:**

**MapReduce:** Introduction to MapReduce-Working of MapReduce-Map Operations-MapReduce User Interfaces.

#### **UNIT-V:**

HBase, CASSANDRA and JAQL: Introduction to HBase-Row-Oriented and column-Oriented Data Stores-HDFS Vs HBase-HBase Architecture-HBase Data Model-Introduction to Cassandra-Features of Cassandra.Introduction to JAQL-JSON-Components of JAQL

#### **TEXT BOOKS**

- ➤ Michael Berthold, David J. Hand, *Intelligent Data Analysis*, Springer. (2007) (For Unit I to III)
- Tom White, *Hadoop:The Definitive Guide*, Third Edition, O'reilly Media (For Unit IV to V), 2012.

#### REFERENCE BOOKS

- Anand Rajaraman and Jeffrey David Ullman, *Mining of Massive Datasets*, 2<sup>nd</sup> Edition, Cambridge University Press, 2012.
- ➤ Viktor Mayer, Schonberger, Kenneth Cukier, *Big Data : A Revolution That Will Transform How We Live, Work and Think*, 2<sup>nd</sup> Edition, Houghton Mifflin Harcourt publishing company, 2013.

#### **WEBLIOGRAPHY**

- ➤ https://www.edx.org/micromasters/adelaidex-big-data
- ➤ http://www.buisnessprocessincubator.com/content/top-10-websites-for-big-data-analytics
- ➤ http://www.sciencedirect.com//topics/computer-science/big-data-analytics
- http://en.m.wikipedia.org/wiki/Big\_data
- http://journalofbigdata.springeropen.com/
- http://link.springer.com/chapter/10.1007/978-3-319-65151-4-23

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | M   | M   | Н   |  |  |
| CO2 | M       | Н   | M   | M   | M   |  |  |
| CO3 | Н       | M   | Н   | Н   | M   |  |  |
| CO4 | M       | Н   | Н   | M   | M   |  |  |
| CO5 | Н       | Н   | Н   | Н   | M   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

# **ELECTIVE 3.2**

## AUBCE3 - FUNDAMENTALS OF DIGITAL IMAGE PROCESSING

Hours: 6 Credits: 5

Semester : VI

## Preamble

This course understands the fundamentals steps in Digital image processing, image compression and image segmentation.

#### **Course Outcomes:**

On successful completion of the course the students will be able to

| CO  | Description of COs                                                                            | Blooms' Taxonomy Level                  |
|-----|-----------------------------------------------------------------------------------------------|-----------------------------------------|
| CO1 | Recognize the fundamental elements of DIP and representation of an image in multi dimensional | <b>K2</b> – Comprehension<br>(Level K2) |
|     | aspects                                                                                       |                                         |
| CO2 | Apply arithmetic and logical operations on                                                    | <b>K4</b> – Analysis(Level K4)          |
|     | image enhancement process                                                                     |                                         |
| CO3 | Interpret the knowledge on compression                                                        | <b>K3</b> – Application(Level K3)       |
|     | techniques for security of an image                                                           | <b>K4</b> – Analysis(Level K4)          |
| CO4 | Verify various deduction mechanisms in image                                                  | <b>K5</b> – Synthesis(Level K5)         |
|     | segmentation                                                                                  |                                         |
| CO5 | Evaluate different types of image transforms and                                              | <b>K5</b> – Synthesis(Level K5)         |
|     | image processing                                                                              |                                         |

#### **COURSE CONTENT**

## UNIT - I:

**Digital Image Processing:** Definition – The Origin of Digital Image Processing – Elements of digital image processing – Steps involved in DIP – Fundamental Steps in DIP – Structure of the Human Eye – Brightness Adaptation and Discrimination – Image Acquisition using a single sensor – Image Acquisition using sensor arrays.

#### **UNIT - II:**

Basic concepts in image sampling and Quantization – Representing Digital Images – Spatial and Gray level resolution – Zooming and shrinking digital images – Neighbors of a pixel – Adjacency, Connectivity – Regions and Boundaries – Distance Measures, Image Operations on a pixel basis.

#### **UNIT - III:**

Image Enhancement in Spatial Domain – Gray level transformation – Image Negatives – Log Transformations – Enhancements using arithmetic/logical operations – Image Subtraction – Image Averaging.

#### **UNIT - IV:**

**Image Compression:** Coding Redundancy – Inter pixel redundancy – Psycho visual redundancy – Image compression models – The source encoder and decoder – The channel Encoder and Decoder.

#### UNIT - V:

**Image Segmentation:** Detection of discontinuous – Point detection – Line Detection – Edge Detection – Representation of Images: Chain Codes – Polygonal approximation – Signatures – Boundary segments – Skeletons.

#### **TEXT BOOK**

➤ Rafael C. Gonzalez & Richard. E. Woods Addison , *Digital Image Processing* – Wesely publishing Company Inc.(Third Indian Reprint, 2000).

#### REFERENCE BOOKS

- Anil K.Jain, "Fundamentals Digital Image Processing", PHI, 1989.
- ➤ B.Chandra and D.Dutta Majundar, "Digital Image Processing and Analysis", 2<sup>nd</sup> Edition, Prentice Hall of India private Ltd., New Delhi, 2011.

## WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_ee116/preview
- http://imagingboook.com/links/
- > http://en.m.wikipedia.org/wiki/digital\_image\_processing
- ➤ http://www.sciencedirect.com/topics/engineering/image-processing
- http://www.geeksforgeeks.org/digital-image-processing-basics/amp/
- http://www.codecool.ir/extra/2020816204611411digital.image.processing

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | M   | M   | Н   | Н   |  |
| CO2     | M   | Н   | Н   | M   | Н   |  |
| CO3     | Н   | Н   | Н   | Н   | M   |  |
| CO4     | Н   | Н   | Н   | Н   | Н   |  |
| CO5     | Н   | M   | Н   | Н   | L   |  |

H-High; M-Medium; L-Low
\*\*\*\*\*\*

# **ELECTIVE 3.3**

# AUBCE3 - MOOC ONLINE COURSE

Hours: 6 Credits: 5

Semester : VI

## **Preamble**

This course motivate the students to learn online courses.

# **Course Outcome**

At the end of the course ,the students will able to gain the knowledge in the specific area and get a online certificate.

| СО  | Description of COs                                         | Blooms' Taxonomy Level   |
|-----|------------------------------------------------------------|--------------------------|
| CO1 | Understand and use the web services available in Internet  | Knowledge (Level K1)     |
|     |                                                            | Comprehension (Level K2) |
| CO2 | Know the web resources in Internet.                        | Analysis (Level K4)      |
| CO3 | Interpret usage of Online courses.                         | Synthesis (Level K5)     |
| CO4 | Know the available course content of the new technologies. | Analysis (Level K4)      |
| CO5 | Get an idea of New technologies.                           | Application(Level K3)    |

## WEBLIOGRAPHY

- ➤ https://onlinecourses.nptel.ac.in
- https://www.edx.org
- > www.swayam.gov.in
- > www.mooc.in

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | M   | M   | Н   |  |  |
| CO2 | Н       | Н   | Н   | M   | M   |  |  |
| CO3 | Н       | Н   | M   | M   | Н   |  |  |
| CO4 | Н       | Н   | M   | Н   | Н   |  |  |
| CO5 | Н       | L   | Н   | Н   | M   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

# SKILL BASED COURSE - VI AUBCGC6 - GREEN COMPUTING

Hours: 2 Credits: 2

Semester : VI

## Preamble

This course obtains the students to acquire the knowledge on green computing in IT.

#### Course outcomes

On successful completion of the course the students will be able to

| СО  | Description of COs                                         | Blooms' Taxonomy Level                     |
|-----|------------------------------------------------------------|--------------------------------------------|
| CO1 | Discuss about basic concepts of green computing.           | Knowledge (Level K1)                       |
| CO2 | Describe green IT in relation to technology                | Comprehension (Level K2)                   |
| CO3 | Evaluate IT use in relation to environmental perspectives. | Application (Level K3)                     |
| CO4 | Analyze the role of Electric Utilities.                    | Analysis (Level K4)                        |
| CO5 | Use methods and tools to measure energy consumption.       | Application (Level K3) Analysis (Level K4) |

#### **COURSE CONTENT**

#### UNIT - I:

The Importance of Green IT: The Growing Significance of Green IT and Green Data Centers - All Companies Can Take Basic Steps-Toward Green IT. The Basics of Green IT: Important Steps for Green IT - Tools for IT Energy Measurement, Monitoring, and Management.

# **UNIT - II:**

Collaboration Is Key for Green IT: IT Technology Vendors – Data Center Design and Build Businesses - Collaboration of Building Energy Management and IT Energy Management - IT Vendors and Collaboration - Energy Manager Software - Global Significance of Energy - Efficiency Certificate Program- Al Gore and Green Collaboration.

#### **UNIT - III:**

The Role of Electric Utilities: The Significant Role of Electric Utilities and IT Energy Ratings in Green IT- Energy Utility Rate Case Incentives - Using Utility Rebates to Minimize Energy Costs in the Data Center- Power Company Incentives for Companies to Go Green - Energy - Efficiency Ratings for IT - IT Vendors Help Lead the Charge Virtualization.

#### **UNIT - IV:**

Chillers, Cooling Tower Fans and Cooling Equipments: Starting with the Data Center Cooling Basics -Data Center Stored Energy Including Stored Cooling - Back to the Future - Water-Cooled Servers - Strategies for Increasing Data Center Cooling Efficiency - Fuel Cells for Data Center Electricity - Other Emerging Technologies for Data Centers.

#### **UNIT - V:**

Case Study Green IT Energy Utilities - Universities and a Large Company - Worldwide Green IT.

#### **TEXT BOOK:**

➤ John Lamb, *The Greening of IT: How Companies Can Make a Difference for the Environment*, 1<sup>st</sup> Edition, Pearson, 2009.

#### **REFERENCE BOOK:**

➤ Bud E.Smith, Green Computing: Tools and Techniques for Saving Energy, Money, and Resources, 1<sup>st</sup> Edition, Auerbach Publications, 2013.

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_ar12/preview
- https://www.edx.org
- ► http://data.conferenceword.in
- ➤ http://www.researchgate.net
- http://whitecode.in
- http://geekflare.com
- http://www.techtarget.com

| Mapping |     |     |     |     |     |  |  |
|---------|-----|-----|-----|-----|-----|--|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1     | Н   | Н   | Н   | Н   | M   |  |  |
| CO2     | Н   | Н   | Н   | Н   | Н   |  |  |
| CO3     | Н   | M   | Н   | L   | Н   |  |  |
| CO4     | Н   | Н   | L   | Н   | M   |  |  |
| CO5     | Н   | M   | Н   | Н   | M   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## NON MAJOR ELECTIVE - II

## AUBCN2 - INTERNET BASICS (Offered to other department Students)

Hours: 2 Credits: 2

Semester : VI

## Preamble

This course imparts basic computer knowledge and to know the Internet basics.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                          | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------------------|--------------------------|
| CO1 | Describe how the Internet works                             | Knowledge(Level K1)      |
| CO2 | Analyze a webpage and identify its elements and attributes. | Knowledge(Level K1)      |
| CO3 | Summarize describe connections that need to                 | Comprehension (Level K2) |
|     | be made in order to access the internet.                    |                          |
| CO4 | Navigate and visit blocks, social networks and              | Analysis(Level K4)       |
|     | online email services.                                      |                          |
| CO5 | Evaluate the concept of Hypertext and                       | Synthesis(Level K5)      |
|     | Hyperlinks                                                  |                          |

## **COURSE CONTENT**

## **UNIT-I:**

Internet and its history – Defining and describing the internet – Brief History – Discussing the future of the Internet.

## **UNIT-II:**

Internet Resources – E-mail – Parts of E-mail - Email software – Web-based email – Email address – Listservs – Newsgroups – Newsgroups Names – Newsgroups Readers – Chat rooms – Conferencing – Games – File transfer Protocol – Telnet – Gopher – World Wide Web

#### **UNIT-III:**

**Accessing the Internet:** Types of access – Online Services – Internet Service Providers – How and Where to look for the Service

#### **UNIT-IV:**

**Browsing the Web :** Hypertext and Hyperlinks – Using Browsers – Uniform Resource Locater – Following Links – Returning to the homepage – Favorites and Bookmarks – Cookies

## **UNIT-V:**

Searching the Net: Search techniques – Boolean Phrases – Search tools – Indexes – Directories – Example of search tools – Saving and downloading

## **TEXT BOOK**

➤ Margaret Levine, *The Complete Reference Internet*, 2<sup>nd</sup> Edition, McGraw Hill Education, 2002.

## REFERENCE BOOK

➤ Alexis Leon ,Mathew Leon, Leon Press, *Fundamentals of Information Technology*, 2<sup>nd</sup> Edition, Vikas Publishing House, 2009.

- ➤ https://www.edx.org
- http://en.m.wikipedia.org/wiki/internet
- ➤ http://library guides.vu.edu.au/oxford referencing/internet-websites
- http://www.scribbr.com/apa-examples/websites/
- http://www.mendeley.com/guides/web-citation-guide

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | Н   | Н   | Н   | M   |  |
| CO2     | Н   | M   | Н   | M   | Н   |  |
| CO3     | Н   | M   | Н   | Н   | M   |  |
| CO4     | L   | Н   | Н   | M   | M   |  |
| CO5     | M   | Н   | Н   | Н   | Н   |  |

H-High; M-Medium; L-Low \*\*\*\*\*\*

## EXTRA CREDIT PAPER

## UGEIT - INTERNET OF THINGS

Credits : 2 Semester : I

#### **Preamble**

This course helps the students to know Internet of Things

## **Course Outcomes**

On successful completion of the course, the student will be able to

| CO  | Description of COs                                               | Blooms' Taxonomy Level   |
|-----|------------------------------------------------------------------|--------------------------|
| CO1 | Gain and understand the concepts of Internet of Things           | Knowledge(Level K1)      |
| CO2 | Analyze basic protocols in wireless sensor network               | Knowledge(Level K1)      |
| CO3 | Understand the application areas of IOT.                         | Comprehension (Level K2) |
| CO4 | Implement interfacing of various network & communication aspects | Analysis(Level K4)       |
| CO5 | Evaluate the various state of the art methodologies              | Synthesis(Level K5)      |

## **COURSE CONTENT**

#### **UNIT - I: INTRODUCTION TO IOT**

Defining IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs

## UNIT - II: IOT & M2M

Machine to Machine, Difference between IoT and M2M, Software define Network

## **UNIT - III: NETWORK & COMMUNICATION ASPECTS**

Wireless medium access issues, MAC protocol survey, Survey routing protocols, Sensor deployment & Node discovery, Data aggregation & dissemination

#### **UNIT - IV: CHALLENGES IN IOT**

Design challenges, Development challenges, Security challenges, Other challenges

## **UNIT - V: DOMAIN SPECIFIC APPLICATIONS OF IOT**

Home automation, Industry applications, Surveillance applications, Other IoT applications

#### **TEXT BOOK**

➤ Vijay Madisetti, Arshdeep Bahga - *Internet of Things: A Hands-On Approach*, Orient Blackswan Private Limited - New Delhi, 2014.

#### REFERENCE BOOK

➤ Waltenegus Dargie and Christian Pollabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practices", John Wiley & Sons Publications, 2010.

#### WEBLIOGRAPHY

- https://onlinecourses.nptel.ac.in/noc22\_cs53/preview
- https://onlinecourses.nptel.ac.in/noc21\_cs17/preview
- https://www.tutorialspoint.com/internet\_of\_things/index.htm
- ➤ https://www.javatpoint.com/iot-internet-of-things
- https://www.guru99.com/iot-tutorial.html

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | M   | Н   | Н   |  |  |
| CO2 | Н       | Н   | Н   | Н   | Н   |  |  |
| CO3 | Н       | M   | Н   | Н   | L   |  |  |
| CO4 | M       | Н   | Н   | L   | Н   |  |  |
| CO5 | Н       | Н   | M   | Н   | M   |  |  |

H-High; M-Medium; L-Low

## EXTRA CREDIT PAPER

## UGEIPC - IPR, PLAGIARISM, COPYRIGHTS AND PATENTS

Credits : 2 Semester : III

## Preamble

The course provides the fundamental aspects of Intellectual property Rights and to play a major role in development and management of innovative projects in industries.

## Course Outcomes

On successful completion of the course, the students will be able to

| CO  | Description of COs                                    | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------------|--------------------------|
| CO1 | Understand and use the basic concepts of              | Knowledge(Level K1)      |
|     | Intellectual property Rights                          |                          |
| CO2 | Examine the Concepts of Intellectual property Rights  | Knowledge(Level K1)      |
|     | such as Plagiarism, Copyrights, Infringement, Patents |                          |
|     | and Licensing                                         |                          |
| CO3 | To identify the significance of practice and          | Comprehension (Level K2) |
|     | procedure of Patents.                                 |                          |
| CO4 | Demonstrate the procedure obtaining copyrights,       | Analysis(Level K4)       |
|     | Trademarks and Industrial Design.                     |                          |
| CO5 | Evaluate to enable the students to keep their IP      | Synthesis(Level K5)      |
|     | rights alive                                          |                          |

## **COURSE CONTENT**

## UNIT - I:

Introduction to IPR, Overview, Importance, IPR in India and IPR abroad

## UNIT – II:

Plagiarism, Etymology, Legal aspects, Academic plagiarism, Journalism, Self plagiarism

#### UNIT – III:

Copyrights, Infringement: Searching, Filing, Distinction between related and copy rights, Trademarks, Role in commerce, Importance, Protection, Registration, Domain names, Trademark Protection Vs. Domain Name Protection, Protection of Domain Names in India

#### **UNIT-IV:**

Patents, Granting, Industrial Designs, Design Patents, Scope, Protection, Filing infringement,
Difference between Designs, Patents, International Treaties - Geographical Indications, International protection

#### UNIT - V:

Licensing, Commercialization, Advantages and Disadvantages of a Licensing Agreement, Criminal laws, Case studies in IPR

#### **TEXT BOOKS**

- ❖ T. M Murray and M.J. Mehlman, *Encyclopedia of Ethical, Legal and Policy issues in Biotechnology*, John Wiley Sons, 2000.
- S.Sasikala, *Inculcating Ethics on "IPR, Plagiarism, Copyrights and Patents"*, Teachers Publishing House, 2018.

#### REFERENCE BOOKS

- ❖ Ajit Parulekar and Sarita D' Souza, *Indian Patents Law Legal; Business Implications*, Macmillan India Ltd , 2006.
- ❖ B.L.Wadehra, Law Relating to Patents, Trade Marks, Copyright, Designs; Geographical Indications, Universal law Publishing Pvt. Ltd., India, 2000.

- ➤ https://www.edx.org
- http://www.enago.com/intellutual-property-rights-what-researchs-need-to-know/
- http://library.alliant.edu/screens/plagarism.pdf
- http://www.wipo.int/edocs/pubdocs/en/copyrights/868/wipo\_pub\_868.pdf
- http://www.plagarism.org-article/what-is-plagarism

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | Н   | Н   | M   |  |  |
| CO2 | Н       | Н   | M   | Н   | Н   |  |  |
| CO3 | Н       | Н   | L   | Н   | M   |  |  |
| CO4 | Н       | Н   | Н   | Н   | M   |  |  |
| CO5 | M       | M   | L   | Н   | Н   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*\*

## EXTRA CREDIT PAPER

## UGETI - TRENDS IN INFORMATION TECHNOLOGY

Credits : 2 Semester : V

## Preamble

This course offers the students to develop the changes in Information Technology, Applications and system around us.

#### Course outcomes

On successful completion of the course the students will be able to

| CO  | Description of COs                                                | Blooms' Taxonomy Level   |
|-----|-------------------------------------------------------------------|--------------------------|
| CO1 | Acquire knowledge on Information Security and Multimedia.         | Knowledge (Level K1)     |
| CO2 | Understand the concept of Telecommunications.                     | Comprehension (Level K2) |
| CO3 | Develop Scripts for Information Technology applications.          | Application (Level K3)   |
| CO4 | Analyze the computing requirements for the appropriate solutions. | Analysis (Level K4)      |
| CO5 | Evaluate multimedia based applications.                           | Synthesis(Level K5)      |

#### **COURSE CONTENT**

#### **UNIT - I:**

**GENERAL SOFTWARE FEATURES AND TRENDS:** Introduction – Ease of use – Graphical user Interface – More Features – Requirements of more Powerful Hardware – multi-Platform Capability –Network Capabilities –Compatibility with other Software – Object Linking and Embedding – Group work Capabilities – Mail Enabling – Web Enabling.

#### **UNIT - II:**

**INTRODUCTION TO WEB DESIGNING:** Style sheet - Style sheet basic - Add style to document - Creating Style sheet rules - Style sheet properties - Font - Text - List - Color and background color - Box - Display properties.

#### **UNIT - III:**

**INTRODUCTION TO MOBILE COMPUTING ARCHITECTURE**: History of computers-History of Internet-Internet the Ubiquitous Network - Architecture for Mobile computing - Three-tier Architecture - Design considerations for mobile computing.

## **UNIT - IV:**

**INTRODUTION TO GRID COMPUTING:** Introduction - Parallel and Distributed Computing - Cluster computing Grid computing - Review of web services – OGSA.

#### UNIT - V:

**E-WASTE MANAGEMENT:** Global context in e- waste - E-waste pollutants - E waste hazardous properties - Effects of pollutant (E- waste) on human health and surrounding environment - domestic e-waste disposal - Basic principles of E waste management - Component of E waste management - Technologies for recovery of resources from electronic waste.

#### **TEXT BOOKS**

- Alexis Leon and Mathews Leon, *Fundamentals of Information Technology*, 2<sup>nd</sup> Edition, Vikas Publisher, 2009 (UNIT-I).
- ➤ Deitel & Deitel, *Internet & World Wide Web How to program*, Pearson Education, 2012 (UNIT-II).
- Asoke K Talukder, Roopa R Yavagal, *Mobile Computing, Technology Applications and Service creation*, Tata McGraw Hill Publishing company New Delhi 2007 (UNIT-III).
- ➤ Maozhen Li, Mark Baker, *The Grid: Core Technologies*, John Wiley & Sum 2005 (UNIT-IV)
- ➤ Johri R., *E-waste: implications, regulations, and management in India and current global best practices*, TERI Press, New Delhi. (UNIT V)

## REFERENCE BOOKS

Suman Singh, *Emerging Trends in Information Technology*, ABS Books, 2020.

Ashok kumar sahu and Rabindra kumar Mahapatra, *Trends and Impact of Information Technology in Librarie*, Ess Ess Publications, 1<sup>st</sup> Edition, 2016.

## WEBLIOGRAPHY

- ➤ https://www.edx.org/course/information-technology-foundations
- > http://techined.ualberta.com
- > http://edtech.education.uconn.edu
- ➤ http://connect.comptia.org
- http://www.softwaretrends.com

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | Н       | Н   | Н   | M   | M   |  |  |
| CO2 | Н       | Н   | Н   | M   | M   |  |  |
| CO3 | Н       | Н   | Н   | M   | M   |  |  |
| CO4 | Н       | M   | Н   | L   | M   |  |  |
| CO5 | Н       | Н   | L   | M   | Н   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## VALUE ADDED COURSE

## AUBCHT - HARDWARE AND TROUBLESHOOTING

Hours : 30 CIA : 100

Semester : II

## **Preamble**

This course facilitates the student understand the concept of Hardware and Trouble shooting and can able to work with the current trouble shooting system.

## **Course Outcomes**

On successful completion of the course, the students will be able to

| CO  | Description of COs                                       | Blooms' Taxonomy Level   |
|-----|----------------------------------------------------------|--------------------------|
| CO1 | Obtaining knowledge of troubleshoot the hardware         | Knowledge (Level K1)     |
|     | components of a computer.                                |                          |
| CO2 | Comprehending the troubleshooting techniques for storage | Comprehension (Level K2) |
|     | devices, input and output devices.                       |                          |
| CO3 | Applying the troubleshooting techniques for hardware     | Application (Level K3)   |
|     | failures.                                                |                          |
| CO4 | Examining the troubleshooting techniques in Network,     | Analysis (Level K4)      |
|     | Printers and Mother board.                               |                          |
| CO5 | Assembling a new system with standard hardware           | Synthesis (Level K5)     |
|     | component                                                |                          |

## **COURSE CONTENT**

## **UNIT - I: Introduction:**

Mother boards & its types-ports, slots, connectors, add on cards, power supply units and cabinet types.

## **UNIT - II: Storage Devices:**

Primary & Secondary storage medium-magnetic disc, RAM, ROM, PROM, EPROM, Floppy, CD-ROM, CD-R/W, DVD.

## **UNIT - III: Hardware Troubleshooting:**

Printers, Floppy drive, Microphone.

## **UNIT - IV: Hardware Troubleshooting:**

Scanner, Network, Hardware failure, Testing, CMOS, CDROM, Hard disk drive

## **UNIT - V: Hardware Troubleshooting:**

Monitor, Mother Board, Sound Card and Video Card.

#### **TEXT BOOK:**

➤ Stephen J.Bigelow, *Trouble Shooting, maintaining and Repairing* PCsl, Tata McGraw-Hill, New Delhi, 2001.

#### **REFERENCE BOOKS:**

- Craig Zacker& John Rourke, —The Complete Reference: PC Hardware, Tata McGraw-Hill, New Delhi, 2001
- ➤ Mike Meyers, —Introduction to PC Hardware and Trouble Shooting, Tata McGraw Hill, New Delhi, 2003.
- ➤ B.Govindarajulu, —IBM PC and Clones Hardware Trouble Shooting and Maintenance, Tata McGraw-Hill, New Delhi, 2002.

- https://www.edx.org
- https://www.pluralsight.com
- https://www.makeuseof.com
- https://www.computerhope.com
- ➤ https://www.techtarget.com

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | M       | Н   | M   | Н   | M   |  |  |
| CO2 | Н       | Н   | Н   | M   | Н   |  |  |
| CO3 | Н       | M   | Н   | L   | Н   |  |  |
| CO4 | M       | Н   | L   | Н   | M   |  |  |
| CO5 | Н       | M   | Н   | Н   | L   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## VALUE ADDED COURSE

# AUBCADPL - APPLICATION DEVELOPMENT IN PROGRAMMING LANGUAGES

Hours : 30 CIA : 100

Semester : IV

#### **Preamble**

This course facilitates the student understand the concept of Application Development in Programming Languages and can able to work with the current Programming Languages.

#### **Course Outcomes**

On successful completion of the course, the students will be able to

| СО  | Description of COs                                                                      | Blooms' Taxonomy Level  |
|-----|-----------------------------------------------------------------------------------------|-------------------------|
| CO1 | Acquiring the knowledge of Application Development in                                   | Knowledge (Level 1)     |
|     | Programming Languages                                                                   |                         |
| CO2 | Understanding the concept of interpreter and Compiler                                   | Comprehension (Level 2) |
| CO3 | Illustrating categories of programming languages                                        | Application (Level 3)   |
| CO4 | Correlating various programming languages used in popular website                       | Analysis (Level 4)      |
| CO5 | Developing simple applications in structured and object oriented Programming Languages. | Creation (Level 6       |

#### **COURSE CONTENT**

## **UNIT - I:**

Introduction - Categories of Programming Languages - Interpreted Programming Languages:

Introduction - Examples - Advantages and disadvantages. Compiled Programming Languages:

Introduction - Advantages and Disadvantages - Examples.

#### **UNIT - II:**

Functional Programming Languages: Introduction – Categories –Examples.

Scripting Languages: Introduction- Advantages – Disadvantages- Examples.

Markup Languages: Introduction –Examples.

## **UNIT - III:**

Application Development in Structured Programming

## **UNIT - IV:**

Application Development in Object Oriented Programming

#### **UNIT - V:**

Programming Languages used in most popular websites: Google.com

Facebook.comYouTube.com - Yahoo-Amazon.Com - Wikipedia.org - Twitter.com - Linkedin.com.

## **TEXT BOOK:**

- Robert W.Sebesta, "Concepts of Programming Languages", Tenth Edition, Pearson Education India, 2013.
- ➤ Mandhir Verma, "An Indroduction to Principles of Programming Languages", Vayu Education of India, 2013.

#### **REFERENCE BOOKS:**

- ➤ Terrance W. Pratt, Marvin V.Zelkowitz, T.V.Gopal, "Programming Languages Design and Implementation", fourth edition, Pearson Education India, 2006.
- ➤ Kenneth C.Louden, Kenneth A. Lambert, "Programming Language Principles and Practics", 3<sup>rd</sup> Edition, 2012.

- https://www.edx.org
- https://www.typesnuses.com/types-of-programming-languages-with-differences/
- https://en.wikipedia.org/wiki/C\_(programming\_language)
- ➤ https://en.wikipedia.org/wiki/Object-oriented\_programming
- https://en.wikipedia.org/wiki/Programming\_languages\_used\_in\_most\_popular\_we

|     | Mapping |     |     |     |     |  |  |
|-----|---------|-----|-----|-----|-----|--|--|
|     | PO1     | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1 | L       | Н   | M   | Н   | L   |  |  |
| CO2 | Н       | M   | Н   | M   | Н   |  |  |
| CO3 | M       | M   | Н   | L   | Н   |  |  |
| CO4 | Н       | Н   | L   | Н   | M   |  |  |
| CO5 | Н       | M   | Н   | Н   | M   |  |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## VALUE ADDED COURSE

## AUBCCDE - COMPUTER FOR DIGITAL ERA

Hours : 30 CIA : 100

Semester : VI

## **Preamble**

This course facilitates the student understand the concept of current Digital system and can able to work with the current technologies.

## **Course Outcomes**

On successful completion of the course, the students will be able to

| СО  | Description of COs                                                                      | Blooms' Taxonomy Level                          |  |
|-----|-----------------------------------------------------------------------------------------|-------------------------------------------------|--|
| CO1 | Get an idea about computer and apply the computing technology in their day to day life. | Knowledge (Level K1) Applications(Level K3)     |  |
| CO2 | Acquire the knowledge about digital India initiatives to                                | Knowledge (Level K1)                            |  |
| CO3 | their surroundings.  Enhancing the digital skill-set required in workplace.             | Comprehension (Level K2)                        |  |
| CO4 | To understand about the E- learning and Security issues.                                | Comprehension (Level K2) Applications(Level K3) |  |
| CO5 | To create awareness about MOOC, SWAYAM, NPTEL courses.                                  | Analysis(Level K4) Synthesis(Level K5)          |  |

## **COURSE CONTENT**

## **UNIT-I:**

INTRODUCTION TO COMPUTER NETWORKS – LAN – WAN – MAN – Wired and wireless network – WiFi Networks - Network Devices – Modem – Switch – Router – Broad Band – Leased Lines Internet.

#### **UNIT-II:**

**INTERNET:** WWW – URL- Browser – e-mail – SMS – MMS - Client Server Computing.

#### **UNIT-III:**

**E GOVERNANCE IN INDIA:** E-Governance initiative by the Government – Digital India Platform –GIS – Mobile Seva App Store- GARV- Grameen Vidyutikaran.

## **UNIT-IV:**

**E -LEARNING AND MOOC:** E – Learning – Digital Library – E- Journals – Introduction to MOOC – Edex – Course era etc -SWAYAM – NPTEL .

## **UNIT-V:**

**CYBER SECURITY** – Virus – Malware – Network Security - Hacking – Big Data – Data Analytics – Social Networks – Social Media Analytics- Introduction to IT Act.

#### **TEXT BOOK:**

- ➤ E- Materials of Manonmaniam Sundaranar University on "Computer for Digital Era",
- http://msuniv.ac.in

#### **REFERENCE BOOKS:**

- Andrew S. Tanenbawm, *Computer Network* by, PHI, 4<sup>th</sup> Edition, 2003.
- ➤ Gautam shroff, *Enterprise cloud computing technology*, *Architecture*, *Applications*, Cambridge University Press, First Edition, 2010.

- ➤ https://www.swayam.gov.in
- https://www.mooc.org
- ➤ http://www.digitalindia.gov.in
- https://www.edx.org
- ➤ https://www.meity.gov.in
- ➤ https://www.cleartax.in

| Mapping |     |     |     |     |     |  |
|---------|-----|-----|-----|-----|-----|--|
|         | PO1 | PO2 | PO3 | PO4 | PO5 |  |
| CO1     | Н   | L   | M   | Н   | M   |  |
| CO2     | Н   | M   | Н   | M   | Н   |  |
| CO3     | M   | L   | Н   | L   | Н   |  |
| CO4     | Н   | Н   | L   | Н   | M   |  |
| CO5     | Н   | M   | Н   | Н   | L   |  |

H-High; M-Medium; L-Low

\*\*\*\*\*

## VALUE ADDED COURSE

## **QUESTION PATTERN:**

Section-A

Seven questions are to be given. Five questions are to be answered.  $5 \times 20 = 100 \text{ marks}$ 

Total marks = 100