
1

DEPARTMENT OF COMPUTER SCIENCE

AND

COMPUTER APPLICATION

LEARNING RESOURCE

2

PROGRAMMING IN “C”

Introduction to C

 C is a programming language developed at AT & T‟s Bell Laboratories of USA in

1972. It was designed and written by a man named Dennis Ritchie. In the late

seventies C began to replace the more familiar languages of that time like PL/I,

ALGOL, etc

 ANSI C standard emerged in the early 1980s, this book was split into two titles: The

original was still called Programming in C, and the title that covered ANSI C was

called Programming in ANSI C.

 Program

 A computer program is just a collection of the instructions necessary to solve a

specific problem.

 The basic operations of a computer system form what is known as the computer‟s

instruction set. And the approach or method that is used to solve the problem is

known as an algorithm

3

Types of program

So for as programming language concern these are of two types.

 Low level language

 High level language

Low level language:

 Low level languages are machine level and assembly level language. In machine

level language computer only understand digital numbers i.e. in the form of 0 and 1

High level language:

 These languages are machine independent, means it is portable. The language in this

category is Pascal, Cobol, Fortran etc. High level languages are understood by the

machine. So it need to translate by the translator into machine level

Structure of C Language program

4

1) Comment line

2) Preprocessor directive

3) Global variable declaration

4)main function()

{

 Local variables;

 Statements;

 }

User defined function

}

}

Comment line

It indicates the purpose of the program. It is represented as

/*……………………………..*/

Comment line is used for increasing the readability of the program. It is useful in

explaining the program and generally used for documentation. It is enclosed

within the decimeters. Comment line can be single or multiple line but should not

be nested. It can be anywhere in the program except inside string constant &

character constant.

 Preprocessor Directive:

#include<stdio.h> tells the compiler to include information about the standard

input/output library. It is also used in symbolic constant such as #define PI

5

3.14(value). The stdio.h (standard input output header file) contains definition

&declaration of system defined function such as printf(), scanf(), pow() etc.

Generally printf() function used to display and scanf() function used to read value

 Global Declaration:

This is the section where variable are declared globally so that it can be access by

all the functions used in the program. And it is generally declared outside the

function.

 main()

It is the user defined function and every function has one main() function from where

actually program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is

placed in the first position.

Syntax : main()

{

……..

……..

……..

}

The main() function return value when it declared by data type as int main()

{

return 0

}

6

The main function does not return any value when void (means null/empty) as void

main(void) or void main()

{

printf (“C language”);

}

Output: C language

Steps for Compiling and executing the Programs

7

Character set

A character denotes any alphabet, digit or special symbol used to represent information.

Valid alphabets, numbers and special symbols allowed in C are

 Identifiers

 name should only consists of alphabets (both upper and lower case), digits

and underscore (_) sign.

 first characters should be alphabet or underscore

 name should not be a keyword

 since C is a case sensitive, the upper case and lower case considered

differently, for example code, Code, CODE etc. are different identifiers.

 identifiers are generally given in some meaningful name such as value,

net salary, age, data etc.

8

 Keyword

There are certain words reserved for doing specific task, these words are known as

reserved word or keywords

 Some examples are int, short, signed, unsigned, default, volatile, float, long,

double, break, continue, typedef, static, do, for, union, return, while, do,

extern, register, enum, case, goto, struct, char, auto, const etc.

DATA TYPES

 basic built-in data types: int, float, double, char

 Enumeration data type: enum

 Derived data type: pointer, array, structure, union

 Void data type: void

Basic data type

9

Constants

 Constant is an any value that cannot be changed during program execution. In C,

any number, single character, or character string is known as a constant

 C constants can be divided into two major categories:

 Primary Constants

 Secondary Constants

Variables

 Variable is a data name which is used to store some data value or symbolic names

for storing program

 computations and results. The value of the variable can be change during the

execution. The rule for naming the variables is same as the naming identifier.

Before used in the program it must be declared. Declaration of variables specify its

10

name, data types and range of the value that variables can store depends upon

its data types.

 Syntax: int a; char c; float f;

Variable initialization

 When we assign any initial value to variable during the declaration, is called

initialization of variables. When variable is declared but contain undefined value

then it is called garbage value. The variable is initialized with the assignment

operator such as

 Data type variable name=constant;

Example:

int a=20;

 Or

 int a;

 a=20;

 statements

Expressions

 An expression is a combination of variables, constants, operators and function call.

It can be arithmetic, logical and relational for

 example:-

int z= x+y // arithmatic expression

11

 a>b //relational

a==b // logical fun

c(a, b) // function call

 Expressions consisting entirely of constant values are called constant expressions.

So, the expression

 121 + 17 - 110

 is a constant expression because each of the terms of the expression is a constant

value. But if i were declared to be an integer variable, the expression

 180 + 2 – j

 would not represent a constant expression.

Operator

 This is a symbol use to perform some operation on variables, operands or with the

constant. Some operator required 2 operand to perform operation or Some required

single operation.

 Several operators are there those are, arithmetic operator, assignment, increment ,

decrement, logical, conditional, comma, size of , bitwise and others.

Arithmatic Operator

 This operator used for numeric calculation. These are of either Unary arithmetic

operator, Binary arithmetic operator.

 Binary arithmetic operator on other hand required two operand and its operators

are +(addition), -(subtraction),

 *(multiplication), /(division), %(modulus).

12

Assignment Operator

 A value can be stored in a variable with the use of assignment operator. The

assignment operator(=) is used in assignment statement and assignment expression

 int x= y;

 int Sum=x+y+z;

Increment and Decrement

 The Unary operator ++, --, is used as increment and decrement which acts upon

single operand. Increment operator increases the value of variable by one

 .Similarly decrement operator decrease the value of the variable by one. And these

operator can only used with the variable, but cann't use with expression and

constant as ++6 or ++(x+y+z).

Relational Operator

 It is use to compared value of two expressions depending on their relation.

Expression that contain relational operator is called relational expression.

 Here the value is assign according to true or false value. a.(a>=b) || (b>20)

 b.(b>a) && (e>b)

 c. 0(b!=7)

Conditional Operator

It sometimes called as ternary operator. Since it required three expressions as operand

and it is represented as (? , :).

 SYNTAX

 exp1 ? exp2 :exp3

13

 Here exp1 is first evaluated. It is true then value return will be exp2 . If false then

exp3.

EXAMPLE

void main()

{

int a=10, b=2

int s= (a>b) ? a:b; printf(“value is:%d”);

}

Output:

Value is:10

Comma Operator

 Comma operator is use to permit different expression to be appear in a situation

where only one expression would be used. All the expression are separator by

comma and are evaluated from left to right.

 EXAMPLE

 int i, j, k, l; for(i=1,j=2;i<=5;j<=10;i++;j++)

Sizeof Operator

 Size of operator is a Unary operator, which gives size of operand in terms of byte

that occupied in the memory. An operand may be variable, constant or data type

qualifier.

EXAMPLE

main()

14

{

int sum; float f;

printf("%d%d" ,size of(f), size of (sum));

printf("%d%d", size of(235 L), size of(A));

}

Bitwise Operator

 Bitwise operator permit programmer to access and manipulate of data at bit level.

 Various bitwise operator enlisted are one's complement (~)

 bitwise AND (&)

 bitwise OR (|)

 bitwise XOR (^)

 left shift (<<)

 right shift (>>)

Logical or Boolean Operator

 Operator used with one or more operand and return either value zero (for false) or

one (for true). The operand may be constant, variables or expressions. And the

expression that combines two or more expressions is termed as logical expression. C

has three logical operators :

Operator Meaning

 && AND

 || OR

15

 ! NOT

Looping statements:-

 it is a block of statement that performs set of instructions. In loops

 Repeating particular portion of the program either a specified number of time or

until a particular no of condition is being satisfied.

 There are three types of loops in c

 1.While loop

 2.do while loop

 3.for loop

 While loop

Syntax:-

while(condition)

{

Statement 1;

Statement 2;

}

Or

while(test condition)

Statement;

16

The test condition may be any expression .when we want to do something a fixed

no of times but not known about the number of iteration, in a program then while

loop is used.

Here first condition is checked if, it is true body of the loop is executed else, If

condition is false control will be come out of loop.

EXAMPLE

/* wap to print 5 times welcome to C” */ #include<stdio.h>

void main()

{

int p=1; While(p<=5)

{

printf(“Welcome to C\n”); P=p+1;

}

}

Output:

Welcome to C

Welcome to C

Welcome to C

 Welcome to C

 Welcome to C

do while loop

17

This (do while loop) statement is also used for looping. The body of this loop may

contain single statement or block of statement. The syntax for writing this

statement is:

Syntax:-

Do

{

Statement;

}

while(condition);

Example:-

 #include<stdio.h>

void main()

{

int X=4; do

{

Printf(“%d”,X); X=X+1;

}whie(X<=10);

Printf(“ ”);

}

 Output: 4 5 6 7 8 9 10

for loop

18

In a program, for loop is generally used when number of iteration are known in advance.

The body of the loop can be single statement or multiple statements. Its syntax for writing

is:

 Syntax:-

for(exp1;exp2;exp3)

{

Statement;

}

EXAMPLE

 void main()

{

int i; for(i=1;i<10;i++)

{

Printf(“ %d ”, i);

}

 }

Output:-1 2 3 4 5 6 7 8 9

Break statement(break)

 Sometimes it becomes necessary to come out of the loop even before loop

condition becomes false then break statement is used. Break statement is used

19

inside loop and switch statements. It cause immediate exit from that loop in which

it appears and it is generally written with condition. It is written with the keyword

as break.

Example :

void main()

{

int j=0; for(;j<6;j++) if(j==4) break;

}

Output:

0 1 2 3

Continue statement (key word continue)

Continue statement is used for continuing next iteration of loop after skipping

some statement of loop. When it encountered control au Example:- void main()

{

int n;

for(n=2; n<=9; n++)

{

if(n==4) continue; printf(“%d”, n);

}

20

}

Printf(“out of loop”);

}

Output: 2 3 5 6 7 8 9 out of loop

tomatically passes through the beginning of the loop.

If statement

 Statement execute set of command like when condition is true and its syntax is

If (condition)

Statement;

EXAMPLE

void main()

{

int n;

printf (“ enter a number:”); scanf(“%d”,&n);

If (n>10)

Printf(“ number is grater”);

}

Output:Enter a number:12 Number is greater

if…..else... Statement

 it is bidirectional conditional control statement that contains one condition & two

possible action. Condition may be true or false, where non-zero value regarded as

21

true & zero value regarded as false. If condition are satisfy true, then a single or

block of statement executed otherwise another single or block of statement is

executed.

 Its syntax is:-

 if (condition)

 {

 Statement1; Statement2;

 }



 else

 {

 Statement1; Statement2;

 }

Example:-

/* To check a number is eve or odd */

void main()

{

int n;

printf (“enter a number:”); sacnf (“%d”, &n);

If (n%2==0)

22

printf (“even number”);

else

}

printf(“odd number”);

Output: enter a number:121 odd number

Nesting of if …else

 When there are another if else statement in if-block or else-block, then it is called

nesting of if-else statement.

 Syntax is :-



 if (condition)

 {



If (condition) Statement1;



else

 }

 statement2;

 Statement3;

23

If….elseLADDER

 In this type of nesting there is an if else statement in every else part except the last

part. If condition is false control pass to block where condition is again checked

with its if statement.

 Syntax is :-

 if (condition) Statement1;

 else if (condition) statement2;

 else if (condition) statement3;

 else

 statement4;

ARRAY

 Array is the collection of similar data types or collection of similar entity stored in

contiguous memory location. Array of character is a string

 ADVANTAGES: array variable can store more than one value at a time where

other variable can store one value at a time.

 Example:

 int arr[100];

 int mark[100];

 DECLARATION OF AN ARRAY :

 Its syntax is :

 Data type array name [size];

24

 int arr[100];

 int mark[100];

 int a[5]={10,20,30,100,5}

INITIALIZATION OF AN ARRAY:

 After declaration element of local array has garbage value. If it is global or static

array then it will be automatically initialize with zero. An explicitly it can be

initialize that

 Data type array name [size] = {value1, value2, value3…}



 Example:

 in ar[5]={20,60,90, 100,120}

ACCESSING OF ARRAY ELEMENT

/*Write a program to input values into an array and display them*/

#include<stdio.h>

int main()

{

int arr[5],i; for(i=0;i<5;i++)

{

printf(“enter a value for arr[%d] \n”,i); scanf(“%d”,&arr[i]);

}

printf(“the array elements are: \n”); for (i=0;i<5;i++)

25

{

printf(“%d\t”,arr[i]);

}

return 0;

}

 OUTPUT:

Enter a value for arr[0] = 12 Enter a value for arr[1] =45 Enter a value for arr[2]

=59 Enter a value for arr[3] =98 Enter a value for arr[4] =21

The array elements are 12 45 59 98 21

Single dimensional arrays and functions

/*program to pass array elements to a function*/ #include<stdio.h>

void main()

{

int arr[10],i;

printf(“enter the array elements\n”); for(i=0;i<10;i++)

{

scanf(“%d”,&arr[i]); check(arr[i]);

}

}

void check(int num)

26

{

if(num%2=0)

{

printf(”%d is even \n”,num);

}

else

{

printf(”%d is odd \n”,num);

}

}

Two dimensional arrays

 Two dimensional array is known as matrix. The array declaration in both the array

i.e.in single dimensional array single subscript is used and in two dimensional

array two subscripts are is used.

 Its syntax is

 Data-type array name[row][column];

 Or we can say 2-d array is a collection of 1-D array placed one below the other.

 Total no. of elements in 2-D array is calculated as row*column

 Example:-

 int a[2][3];

 Total no of elements=row*column is 2*3 =6

27

 It means the matrix consist of 2 rows and 3 columns

String

 Array of character is called a string. It is always terminated by the NULL

character. String is a one dimensional array of character.

 We can initialize the string as char name[]={„j‟,‟o‟,‟h‟,‟n‟,‟\o‟};

String library function

 There are several string library functions used to manipulate string and the

prototypes for these functions are in header file “string.h”. Several string functions

are

strlen()

 This function return the length of the string. i.e. the number of characters in the

string excluding the terminating NULL character.

 It accepts a single argument which is pointer to the first character of the string.

For example-

strlen(“suresh”);

It return the value 6.

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str[50];

28

 print(”Enter a string:”);

gets(str);

printf(“Length of the string is %d\n”,strlen(str));

}

Output:

Enter a string: C in Depth Length of the string is 8

strcmp()

 This function is used to compare two strings. If the two string match, strcmp() return a

value 0 otherwise it return a non-zero value. It compare the strings character by

character and the comparison stops when the end of the string is reached or the

corresponding characters in the two string are not same.

 strcmp(s1,s2) return a value:

 <0 when s1<s2

 =0 when s1=s2

 >0 when s1>s2

strcpy()

 This function is used to copying one string to another string. The function

strcpy(str1,str2) copies str2 to str1 including the NULL character. Here str2 is the

source string and str1 is the destination string.

 The old content of the destination string str1 are lost. The function returns a

pointer to destination string str1.

29

Example:-

#include<stdio.h>

 #include<string.h>

void main()

{

char str1[10],str2[10];

printf(“Enter a string:”);

scanf(“%s”,str2);

strcpy(str1,str2);

printf(“First string:%s\t\tSecond string:%s\n”,str1,str2);

strcpy(str,”Delhi”);

strcpy(str2,”Bangalore”);

printf(“First string :%s\t\tSecond string:%s”,str1,str2);

strcat()

 This function is used to append a copy of a string at the end of the other string. If

the first string is “”Purva” and second string is “Belmont” then after using this

function the string becomes “PusvaBelmont”. The NULL character from str1 is

moved and str2 is added at the end of str1. The 2
nd

 string str2 remains unaffected.

A pointer to the first string str1 is returned by the function

30

 Example:-

#include<stdio.h>

 #include<string.h>

 void main()

{

char str1[20],str[20]; printf(“Enter two strings:”); gets(str1);

gets(str2); strcat(str1,str2);

printf(“First string:%s\t second string:%s\n”,str1,str2); strcat(str1,”-one”);

printf(“Now first string is %s\n”,str1);

}

Output

Enter two strings: data Base

First string: database second string: database

 Now first string is: database-one

FUNCTION

 A function is a self contained block of codes or sub programs with a set of

statements that perform some specific task or coherent task when it is called.

 There are basically two types of function those are

 Library function

 User defined function

 Here in system defined function description:

31

 Function definition : predefined, precompiled, stored in the library

 Function declaration : In header file with or function prototype.

 Function call : By the programmer

 User defined function

 Syntax:-

 Return type name of function (type 1 arg 1, type2 arg2, type3 arg3) Return type

 function name argument list of the above syntax

 So when user gets his own function three thing he has to know, these are.

 Function declaration

 Function definition

 Function call

 Function declaration:-

 Function declaration is also known as function prototype. It inform the compiler

about three thing, those are name of the function, number and type of argument

received by the function and the type of value returned by the function.

 While declaring the name of the argument is optional and the function prototype

always terminated by the semicolon.

 Function definition:-

 Function definition consists of the whole description and code of the function. It

tells about what function is doing what are its inputs and what are its out put It

consists of two parts function header and function body

 Syntax:-

32

 return type function(type 1 arg1, type2 arg2, type3 arg3) /*function header*/

 {

 Local variable declaration; Statement 1;

 Statement 2;

 Return value

 Function Call

 When the function get called by the calling function then that is called, function

call. The compiler execute these functions when the semicolon is followed by the

function name.

 Example:- function(arg1,arg2,arg3);

 The argument that are used inside the function call are called actual argument

 Ex:-

 int S=sum(a, b); //actual arguments

Actual argument

 The arguments which are mentioned or used inside the function call is knows as

actual argument and these are the original values and copy of these are actually

sent to the called function

 It can be written as constant, expression or any function call like Function (x);

 Function (20, 30); Function (a*b, c*d); Function(2,3,sum(a, b));

Formal Arguments

 The arguments which are mentioned in function definition are called formal

arguments or dummy arguments.

33

 These arguments are used to just hold the copied of the values that are sent by the

calling function through the function call.

 These arguments are like other local variables which are created when the function

call starts and destroyed when the function ends.

 The basic difference between the formal argument and the actual argument are

The formal argument are declared inside the parenthesis where as the local variable

declared at the beginning of the function block.

 The formal argument are automatically initialized when the copy of actual

arguments are passed while other local variable are assigned values through the

statements.

 Order number and type of actual arguments in the function call should be match

with the order number and type of the formal arguments.

Call by value and call by reference

 Call by value

 In the call by value copy of the actual argument is passed to the formal argument

and the operation is done on formal argument.When the function is called by „call

by value‟ method, it doesn‟t affect content of the actual argument.

Example:-

main()

{

int x,y; change(int,int);

printf(“enter two values:\n”); scanf(“%d%d”,&x,&y); change(x ,y);

34

printf(“value of x=%d and y=%d\n”,x ,y);

}

change(int a,int b);

{

int k; k=a; a=b; b=k;

}

Output: enter two values: 12 23

Value of x=12 and y=23

Call by reference

 Instead of passing the value of variable, address or reference is passed and the

function operate on address of the variable rather than value.

Example:-

void main()

{

int a,b;

change(int *,int*);

printf(“enter two values:\n”); scanf(“%d%d”,&a,&b);change(&a,&b);

printf(“after changing two value of a=%d and b=%d\n:”a,b);

}

change(int *a, int *b)

35

{

int k; k=*a;

*a=*b;

*b= k;

 printf(“value in this function a=%d and b=%d\n”,*a,*b);

}

Output: enter two values: 12 32

Value in this function a=32 and b=12

After changing two value of a=32 and b=12

 So here instead of passing value of the variable, directly passing address of the

variables. Formal argument directly access the value and swapping is possible

even after calling a function.

Local, Global and Static variable

 Local variable:-

 variables that are defined with in a body of function or block. The local variables

can be used only in that function or block in which they are declared.

Same variables may be used in different functions such as function()

{

int a,b; function 1();

}

function2 ()

36

{

int a=0; b=20;

}

 Global variable:-

 The variables that are defined outside of the function is called global variable. All

functions in the program can access and modify global variables. Global variables

are automatically initialized at the time of initialization.

Example:

 #include<stdio.h>

 void function(void); void function1(void); void function2(void); int a, b=20;

void main()

{

 printf(“inside main a=%d,b=%d \n”,a,b); function();

function1();

function2();

}

function()

{

 Prinf(“inside function a=%d,b=%d\n”,a,b);

}

 function 1()

37

{

prinf(“inside function a=%d,b=%d\n”,a,b);

}

function 2()

{

 prinf(“inside function a=%d,b=%d\n”,a,);

}

 Static variables:

 static variables are declared by writing the key word static.

 -syntax:-

 static data type variable name; static int a;

 -the static variables initialized only once and it retain between the function call. If

its variable is not initialized, then it is automatically initialized to zero.

Example:

void fun1(void); void fun2(void); void main()

{

 fun1();

fun2();

}

 void fun1()

38

{

int a=10, static int b=2; printf(“a=%d, b=%d”,a,b); a++;

b++;

}

Output:

a= 10

 b= 2

a=10

b= 3

Monolithic Programming

 The program which contains a single function for the large program is called

monolithic program. In monolithic program not divided the program, it is huge

long pieces of code that jump back and forth doing all the tasks like single thread

of execution, the program requires. Problem arise in monolithic program is that,

when the program size increases it leads inconvenience and difficult to maintain

 such as testing, debugging etc. Many disadvantages of monolithic programming

are:

 Difficult to check error on large programs size.

 Difficult to maintain because of huge size.

 Code can be specific to a particular problem. i.e. it cannot be reused.

 Many early languages (FORTRAN, COBOL, BASIC, C) required one huge

workspace with labelled areas that may does specific tasks but are not isolated.

http://www.answers.com/Q/What_is_a_monolithic_program

39

Modular Programming

 The process of subdividing a computer program into separate sub-programs such

as functions and subroutines is called Modular programming. Modular

programming sometimes also called as structured programming. It enables

multiple programmers to divide up the large program and debug pieces of program

independently and tested.

Storage Classes

 Storage class in c language is a specified which tells the compiler where and how

to store variables, its initial value and scope of the variables in a program

 Syntax of declaring storage classes is:-

 storage class data type variable name;There are four types of storage classes and

all are keywords:-

 There are four types of storage classes and all are keywords:-

 1) Automatic (auto)

 2) Register (register)

 3) Static (static)

 4) External (extern)

Examples

auto float x;

 or

float x;

40

 extern int x;

register char c;

static int y;

Compiler assume different storage class based on:-

 Storage class:- tells us about storage place(where variable would be stored).

 Intial value:-what would be the initial value of the variable.

 If initial value not assigned, then what value taken by uninitialized variable.

 Scope of the variable:-what would be the value of the variable of the program.

 Life time :- It is the time between the creation and distribution of a variable or

how long would variable exists.

Types of storage

 Automatic storage class

 The keyword used to declare automatic storage class is auto. Its features:-

 Storage-memory location

 Default initial value:-unpredictable value or garbage value.

 Scope:-local to the block or function in which variable is defined.

 Life time:-Till the control remains within function or block in which it is defined.

It terminates when function is released.

 The variable without any storage class specifier is called automatic variable.

Example:-

main()

41

{

auto int i; printf(“i=”,i);

}

 Register storage class

 The keyword used to declare this storage class is register. The features are:-

 Storage:-CPU register.

 Default initial value :-garbage value

 Scope :-local to the function or block in which it is defined.

 Life time :-till controls remains within function or blocks in which it is defined.

 Register variable don‟t have memory address so we can‟t apply address operator

on it. CPU register generally of 16 bits or 2 bytes. So we can apply storage classes

only for integers, characters, pointer type.

Static storage class

 The keyword used to declare static storage class is static. Its feature are:-

 Storage:-memory location

 Default initial value:- zero

 Scope :- local to the block or function in which it is defined.

 Life time:- value of the variable persist or remain between different function call.

Example:-

main()

{

42

reduce();

reduce();

reduce ();

}

reduce()

{

static int x=10; printf(“%d”,x); x++;

}

Output:-10,11,12

 External storage classes

 The keyword used for this class is extern. Features are:-

 Storage:- memory area Default initial value:-zero Scope :- global

 Life time:-as long as program execution remains it retains.

Declaration does not create variables, only it refer that already been created at

somewhere else. So, memory is not allocated at a time of declaration and the

external variables are declared at outside of all the function.

Example:-

int i,j;

void main()

{

printf(“i=%d”,i); receive(); receive (); reduce();

43

reduce();

}

receive()

{

i=i+2;

printf(“on increase i=%d”,i);

}

reduce()

{

i=i-1;

printf(“on reduce i=%d”,i);

}

Output:-i=0,2,4,3,2.

POINTER

 A pointer is a variable that store memory address or that contains address of

another variable where addresses are the location number always contains whole

number. So, pointer contain always the whole number. It is called pointer because

it points to a particular location in memory by storing address of that location.

 Syntax-

 Data type *pointer name;

 Here * before pointer indicate the compiler that variable declared as a pointer. e.g.

44

int *p1; //pointer to integer type

 float *p2; //pointer to float type

 char *p3; //pointer to character type

Example:

void main()

{

 int i=105;

 int *p; p=&i;

printf(“value of i=%d”,*p);

printf(“value of i=%d”,*/&i);

 printf(“address of i=%d”,&i);

printf(“address of i=%d”,p);

printf(“address of p=%u”,&p);

}

 Pointer Arithmetic

 Pointer arithmetic is different from ordinary arithmetic and it is perform relative to

the data type(base type of a pointer).

Example:-

 If integer pointer contain address of 2000 on incrementing we get address of 2002

instead of 2001, because, size of the integer is of 2 bytes.

Ex:-

45

void main()

{

static int a[]={20,30,105,82,97,72,66,102};

int *p,*p1;

P=&a[1];

P1=&a[6];

printf(“%d”,*p1-*p);

printf(“%d”,p1-p);

}

Arithmetic operation never perform on pointer are:

 addition, multiplication and division of two pointer. multiplication between

the pointer by any number. division of pointer by any number

 Pointer Comparison

 Pointer variable can be compared when both variable, object of same data type and

it is useful when both pointers variable points to element of same array.

 ==,!=,<=,<,>,>=, can be used with pointer. Equal and not equal operators used to

compare two pointer should finding whether they contain same address or not and

they will equal only if are null or contains address of same variable.

Ex:-

void main()

46

{

static int arr[]={20,25,15,27,105,96} int *x,*y;

x=&a[5];

y=&(a+5); if(x==y) printf(“same”); else printf(“not”);

}

Pointer to pointer

 Addition of pointer variable stored in some other variable is called pointer to

pointer variable.

 Or

 Pointer within another pointer is called pointer to pointer.

 Syntax:-

 Data type **p;

 int x=22;

 int *p=&x;

 int **p1=&p;

 P 2000

 X 1000

 22

 printf(“value of x=%d”,x);

 printf(“value of x=%d”,*p);

47

 printf(“value of x=%d”,*&x);

 printf(“value of x=%d”,**p1);

 printf(“value of p=%u”,&p);

 printf(“address of p=%u”,p1);

 printf(“address of x=%u”,p);

 printf(“address of p1=%u”,&p1);

 printf(“value of p=%u”,p);

 printf(“value of p=%u”,&x);

Pointer vs array

Example :-

void main()

static char arr[]=”Rama”;

char*p=”Rama”;

printf(“%s%s”, arr, p);

 In the above example, at the first time printf(), print the same value array and

pointer.

 Here array arr, as pointer to character and p act as a pointer to array of

character .When we are trying to increase the value of arr it would give the error

because its known to compiler about an array and its base address which is always

printed to base address is known as constant pointer and the base address of array

which is not allowed by the compiler.

 printf(“size of (p)”,size of (ar)); size of (p) 2/4 bytes

48

 size of(ar) 5 byes

Structure

 It is the collection of dissimilar data types or heterogenous data typesgrouped

together. It means the data types may or may not be of same type.

Structure declaration-

struct tagname

{

Data type member1; Data type member2; Data type member3;

………

………

Data type member n;

}

Structure variable declaration;

struct student

{

int age; char name[20];

 char branch[20];

}; struct student s;

Initialization of structure variable

 Like primary variables structure variables can also be initialized when they are

declared. Structure templates can be defined locally or globally. If it is local it can

49

be used within that function. If it is global it can be used by all other functions of

the program.

 We can‟t initialize structure members while defining the structure struct student

 {

 int age=20;

 char name[20]=”sona”;

 }s1;

 The above is invalid.

 A structure can be initialized as struct student

 {

 int age,roll; char name[20];

 } struct student s1={16,101,”sona”}; struct student s2={17,102,”rupa”};

 If initialiser is less than no.of structure variable, automatically rest values are taken

as zero.

Accessing structure elements

 Dot operator is used to access the structure elements. Its associativety is from left

to right.

 structure variable ;

 s1.name[];

 s1.roll;

 s1.age;

50

Example:

#include<stdio.h>

 #include<conio.h>

void main()

{

int roll, age;

 char branch;

}

s1,s2;

printf(“\n enter roll, age, branch=”);

scanf(“%d %d %c”, &s1.roll, &s1.age, &s1.branch); s2.roll=s1.roll;

printf(“ students details=\n”);

printf(“%d %d %c”, s1.roll, s1.age, s1.branch); printf(“%d”, s2.roll);

}

Size of structure

 Size of structure can be found out using sizeof() operator with structure variable

name or tag name with keyword.

 sizeof(struct student); or sizeof(s1);

 sizeof(s2);

 Size of structure is different in different machines. So size of whole structure may

not be equal to sum of size of its members.

51

Array of structures

 When database of any element is used in huge amount, we prefer Array of

structures.

 Example:

 Suppose we want to maintain data base of 200 students, Array of structuresis used.

#include<stdio.h>

#include<string.h>

struct student

{

char name[30];

 char branch[25]; int roll;

};

void main()

{

struct student s[200]; int i;

s[i].roll=i+1;

printf("\nEnter information of students:");

for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll);

52

printf("\nEnter the name:");

 scanf("%s",s[i].name);

printf("\nEnter the branch:");

scanf("%s",s[i].branch); printf("\n");

}

printf("\nDisplaying information of students:\n\n"); for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

printf("\nName:");

puts(s[i].name);

printf("\nBranch:"); puts(s[i].branch);

}

}

Array within structures

 struct student

 {

 char name[30];

 int roll,age,marks[5];

 }; struct student s[200];

 We can also initialize using same syntax as in array.

53

Nested structure

 When a structure is within another structure, it is called Nested structure. A

structure variable can be a member of another structure and it is representedas

struct student

{

element 1;

element 2;

………

………

struct student1

{

member 1;

member 2;

}variable 1;

……….

………. element n;

}variable 2;

printf("\nEnter the roll no:%d\n",s[i].roll);

printf("\nEnter the name:");

 scanf("%s",s[i].name);

54

printf("\nEnter the branch:");

scanf("%s",s[i].branch); printf("\n");

}

printf("\nDisplaying information of students:\n\n"); for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

printf("\nName:");

puts(s[i].name);

printf("\nBranch:"); puts(s[i].branch);

}

}

Passing structure elements to function

 We can pass each element of the structure through function but passing individual

element is difficult when number of structure element increases. To overcome this,

we use to pass the whole structure through function instead of passing individual

element.

#include<stdio.h>

#include<string.h>

void main()

{

struct student

55

{

char name[30];

char branch[25]; int roll;

}struct student s; printf(“\n enter name=”);

gets(s.name); printf("\nEnter roll:");

scanf("%d",&s.roll);

 printf("\nEnter branch:");

gets(s.branch);

 display(name,roll,branch);

}

display(char name, int roll, char branch)

{

printf(“\n name=%s,\n roll=%d, \n branch=%s”, s.name, s.roll. s.branch);

}

UNION

 Union is derived data type contains collection of different data type or dissimilar

elements. All definition declaration of union variable and accessing member is

similar to structure, but instead of keyword struct the keyword union is used, the

main difference between union and structure is

 Syntax of union:

 union student

56

 {

 datatype member1; datatype member2;

 };

 Like structure variable, union variable can be declared with definition or

separately such as

 union union name

 {

 Datatype member1;

 }var1;

Example:-

struct student

 {

 int i;

 char ch[10];

 };struct student s;

 Here datatype/member structure occupy 12 byte of location is memory, where as

in the union side it occupy only 10 byte.

Nested of Union

 When one union is inside the another union it is called nested of union.

Example:-

union a

57

{

int i; int age;

};

union b

{

char name[10];

union a aa;

};

 union b bb;

 There can also be union inside structure or structure in union.

Example:-

 void main()

{

struct a

{

int i;

char ch[20];

};

struct b

{

58

int i;

char d[10];

};

union z

{

struct a a1; struct b b1;

};

 union z z1; z1.b1.j=20; z1.a1.i=10; z1.a1.ch[10]= “ i“;

z1.b1.d[0]=”j “;

printf(“ “);

Dynamic memory Allocation

 The process of allocating memory at the time of execution or at the runtime, is

called dynamic memory location.

 Two types of problem may occur in static memory allocation.

 If number of values to be stored is less than the size of memory, there would be

wastage of memory.

 If we would want to store more values by increase in size during the execution on

assigned size then it fails

 malloc ()

 returns the pointer to the 1
st
 byte and allocate memory, and its return type is void,

which can be type cast such as:

59

 int *p=(datatype*)malloc(size)

 If memory location is successful, it returns the address of the memory chunk that

was allocated and it returns null on unsuccessful and from the above declaration a

pointer of type(datatype) and size in byte.

 And datatype pointer used to typecast the pointer returned by malloc and this

typecasting is necessary since, malloc() by default returns a pointer to void.

Example

int*p=(int*)malloc(10);

/*calculate the average of mark*/ void main()

{

int n , avg,i,*p,sum=0;

printf("enter the no. of marks ”);

 scanf(“%d”,&n);

p=(int *)malloc(n*size(int));

 if(p==null)

printf(“not sufficient”);

exit();

}

for(i=0;i<n;i++)

scanf(“%d”,(p+i)); for(i=0;i<n;i++)

 Printf(“%d”,*(p+i));

60

 sum=sum+*p; avg=sum/n;

printf(“avg=%d”,avg);

 calloc()

 Similar to malloc only difference is that calloc function use to allocate multiple

block of memory .

 two arguments are there

1
st
 argument specify number of blocks

2
nd

 argument specify size of each block.

Example:-

int *p= (int*) calloc(5, 2);

int*p=(int *)calloc(5, size of (int));

realloc()

The function realloc use to change the size of the memory block and it alter the size of

the memory block without loosing the old data, it is called reallocation of memory.

 It takes two argument such as; int *ptr=(int *)malloc(size);

 int*p=(int *)realloc(ptr, new size);

 The new size allocated may be larger or smaller

Example:

#include<stdio.h>

 #include<alloc.h>

 void main()

61

int i,*p;

p=(int*)malloc(5*size of (int)); if(p==null)

{

printf(“space not available”); exit();

printf(“enter 5 integer”); for(i=0;i<5;i++)

{

scanf(“%d”,(p+i)); int*ptr=(int*)realloc(9*size of (int)); if(ptr==null)

{

printf(“not available”); exit();

}

printf(“enter 4 more integer”); for(i=5;i<9;i++) scanf(“%d”,(p+i));

for(i=0;i<9;i++)

printf(“%d”,*(p+i));

}

 free()

 Function free() is used to release space allocated dynamically, the memory

released by free() is made available to heap again. It can be used for further

purpose.

 Syntax for free declaration . void(*ptr)

 free(p)

62

 When program is terminated, memory released automatically by the operating

system. Even we don‟t free the memory, it doesn‟t give error, thus lead to memory

leak.

 We can‟t free the memory, those didn‟t allocated.

Dynamic array

 Array is the example where memory is organized in contiguous way, in the

dynamic memory allocation function used such as malloc(), calloc(), realloc()

always made up of contiguous way and as usual we can access the element in two

ways as:

 Subscript notation Pointer notation

Example:

#include<stdio.h>

 #include<alloc.h>

 void main()

{

printf(“enter the no.of values”);

scanf(“%d”,&n);

p=(int*)malloc(n*size of int);

If(p==null)

printf(“not available memory”);

 exit();

}

63

for(i=0;i<n;i++)

{

printf(“enter an integer”);

scanf(“%d”,&p[i]); for(i=0;i<n;i++)

{

printf(“%d”,p[i]);

}

}

FILE HANDLING:

File: the file is a permanent storage medium in which we can store the data permanently.

 Types of file can be handled

 we can handle three type of file as

 sequential file

 random access file

 binary file

File Operation

 opening a file:

 Before performing any type of operation, a file must be opened and for this

fopen() function is used.

 syntax:

64

 file-pointer=fopen(“FILE NAME ”,”Mode of open”);

 File-pointer: The file pointer is a pointer variable which can be store the address

of a special file that means it is based upon the file pointer a file gets opened.

 Declaration of a file pointer:-

 FILE* var;

 Modes of open

 The file can be open in three different ways as

Read mode ’ r’/rt Write mode ’w’/wt Appened Mode ’a’/at

 Reading a character from a file

 getc() is used to read a character into a file Syntax:

 character_variable=getc(file_ptr);

 Writing acharacter into a file

 putc() is used to write a character into a file

 puts(character-var,file-ptr);

 CLOSING A FILE

 fclose() function close a file.

 fclose(file-ptr);

 fcloseall () is used to close all the opened file at a time

65

File Operation

 The following file operation carried out the file

 (1)creation of a new file

 (3)writing a file

 (4)closing a file

 Before performing any type of operation we must have to open the file.c, language

communicate with file using A new type called file pointer.

 Operation with fopen()

 File pointer=fopen(“FILE NAME”,”mode of open”);

 If fopen() unable to open a file then it will return NULL to the file-pointer.

Reading and writing a characters from/to a file

 fgetc() is used for reading a character from the file

 Syntax:

 character variable= fgetc(file pointer);

 fputc() is used to writing a character to a file

 Syntax:

 fputc(character,file_pointer);

 EXAMPLE

/*Program to copy a file to another*/

#include<stdio.h>

66

void main()

{

FILE *fs,*fd; char ch;

If(fs=fopen(“scr.txt”,”r”)==0)

{

printf(“sorry….The source file cannot be opened”); return;

}

If(fd=fopen(“dest.txt”,”w”)==0)

{

printf(“Sorry…..The destination file cannot be opened”); fclose(fs);

return;

}

while(ch=fgets(fs)!=EOF) fputc(ch,fd);

fcloseall();

}

Reading and writing a string from/to a file

fgets() is used for reading a string from the file Syntax:

 fgets(string, length, file pointer);

 fputs() is used to writing a character to a file

 Syntax:

67

fputs(string,file_pointer);

EXAMPLE

 #include<string.h>

 #include<stdio.h>

void main(void)

{

FILE*stream;

char string[]=”This is a test”;

 char msg[20];

/*open a file for update*/ stream=fopen(“DUMMY.FIL”,”w+”);

/*write a string into the file*/ fwrite(string,strlen(string),1,stream);

/*seek to the start of the file*/ fseek(stream,0,SEEK_SET);

/*read a string from the file*/ fgets(msg,strlen(string)+1,stream);

/*display the string*/

 printf(“%s”,msg);

fclose(stream);

}

68

One mark questions:

1. What is the disadvantage of arrays in C?

a. Multiple other data structures can be implemented using arrays

b. The amount of memory to be allocated needs to be known beforehand.

c. Elements of array can be accessed in constant time

d. Elements are stored in contiguous memory blocks

Answer: b.The amount of memory to be allocated needs to be known

beforehand.

2. How many bytes does “int = D” use?

a.1

b.0

c.10

d. 2 or 4

Answer: d. 2 or 4

3. Directives are translated by the__________

a. Pre-processor

b. Compiler

c. Linker

d. Editor

Answer: a. Pre-processor

69

4. What feature makes C++ so powerful?

a. Reusing the old code

b. Easy implementation

c. Easy memory management

d. All of the above

Answer: All of the above

5. What is the maximum number of characters that can be held in the string

variable char address line [40]?

a. 39

b. 41

c. 40

d. 38

Answer: 39

6. Which of the following SLT template class is a container adaptorclass?

a. Deque

b. Vector

c. List

d. Stack

Answer: Stack

7. If addition had higher precedence than multiplication, then the value of

the expression (1 + 2 * 3 + 4 * 5) would be which of the following?

70

a. 27

b. 105

c. 69

d. 47

Answer: b. 105

Explanation: (1 + 2 * 3 + 4 * 5)

= (1 + 2) * (3 + 4) * 5

= 3 * 7 * 5

= 105

8. Each instance of a class has a different set of______

a. Attribute values

b. Class interfaces

c. Return types

d. Methods

Answer: Attribute values

9. What is the return type of the fopen() function in C?

a. An integer

b. pointer to a FILE object

c. Pointer to an integer

d. None of the above

71

Answer:b. pointer to a FILE object

10. How to find the length of an array in C?

a. sizeof(a)/sizeof(a[0])

b. sizeof(a)

c. sizeof(a)*sizeof(a[0])

d. None of the above

Answer: a. sizeof(a)/sizeof(a[0])

11. Which of the following is not a storage class specifier in C?

a. extern

b. volatile

c. typedef

d. static

Answer: volatile

2. Which of the following will occur if we call the free() function on aNULL

pointer?

a. The program will execute normally

b. Compilation Error

c. Runtime error

d. undefined behaviour

Answer: The program will execute normally

72

13. Which of the following should be used to free memory from a pointer

allocated using the “new” operator?

a. free()

b. realloc()

c. delete

d. None of the above

Answer: delete14. Which data structure is used to handle recursion in C?

a. Stack

b. Queue

c. Trees

d. Deque

Answer: Stack

15. Which of the below statements is incorrect in case of union?

a. Union is a user-defined data structure

b. All data share same memory

c. Union stores methods too

d. union keyword is used to initialize

Answer: c. Union stores methods too

e. 5 . Operators have precedence. Precedence determines which operator is

f. a) faster

g. b) takes less memory

73

h. c) evaluated first

i. d) takes no arguments

Ans: c

34. Integer Division results in

a) Rounding the fractional part

b) Truncating the fractional part

c) Floating value

d) An Error is generated

Ans: b

35. Which of the following is a ternary operator?

a) ?:

b) *

c) sizeof

d) ^

Ans: a

36. What will be the output of the expression 11 ^ 5?

a) 5

b) 6

c) 11

d) None of these

Ans: d

37. The type cast operator is

a) (type)

b) cast()

c) (;;)

d) // " "

Ans: a

74

38. Explicit type conversion is known as

a) Casting

b) Conversion

c) Disjunction

d) Separation

Ans: a

39.

5

33. Operators have precedence. Precedence determines which operator is

a) faster

b) takes less memory

c) evaluated first

d) takes no arguments

Ans: c

34. Integer Division results in

a) Rounding the fractional part

b) Truncating the fractional part

c) Floating value

d) An Error is generated

Ans: b

35. Which of the following is a ternary operator?

a) ?:

b) *

c) sizeof

75

d) ^

Ans: a

36. What will be the output of the expression 11 ^ 5?

a) 5

b) 6

c) 11

d) None of these

Ans: d

37. The type cast operator is

a) (type)

b) cast()

c) (;;)

d) // " "

Ans: a

38. Explicit type conversion is known as

a) Casting

b) Conversion

c) Disjunction

d) Separation

Ans: a

16.How is the 3
rd

element in an array accessed based on pointer

notation?

a.*a + 3

b. *(*a+3)

76

c.*(a + 3)

d.& (a+3)

Answer: c.*(a + 3)

17. Which of the following function is used to open a file in C++?

a.fgets

b.fseek

c.fclose

d.fopen

Answer: d.fopen ()

18. Which of the following are correct file opening modes in C?

a.w

b.r

c.rb

d.All of the above

Answer: d.All of the above

19. What is required in each C program?

a. The program does not require any function.

b. The program must have at least one function

c. Output data

d. Input data

77

Answer: b. The program must have at least one function

20In which of the following languages is function overloading notpossible?

a.C++

b.C

c.Python

d.Java

Answer: C

21. What is the output of this statement “printf(“%d”, (a++))”?

a. Error message

b. The value of (a + 1)

c. The current value of a

d. Garbage

Answer: c.The current value of a

22. Why is a macro used in place of a function?

a. It reduces code size

b. It reduces execution time

c. It increases code size

d. It increases execution time

Answer: It reduces code size

23. What is the 16-bit compiler allowable range for integer constants?

78

a. -3.4e38 to 3.4e38

 b. -32767 to 32768

c. -32668 to 32667

d. -32768 to 32767

Answer: d. -32768 to 32767

24. What is a lint?

a. Iteractive debugger

b. Ccompiler

c. C Interpreter

d. Anlyzing tool

Answer: d. Analyzing tool

25. Ifp is an integer pointer with a value 1000, then what will the valueof p + 5

be?

a.1005

b.1020

c.1004

d.1010

Answer: d. 1020

26. How to declare a double-pointer in C?

a. int **val

b. int *val

79

c. int **val

d. int &val

Answer:c. int **val

27. What is the size of the int data type (in bytes) in C?

a.4

b.8

c.2

d.1

Answer: a. 4

28. In the C language, the constant is defined _______.

a. Before main

b. Anywhere, but starting on a new line.

c.After main

d.None of the these

Answer: b. Anywhere, but starting on a new line

29. How are String represented in memory in C?

a. An Array of characters

b. Linked list of characters

c. The object of some class

d. Some as other primitive data types

80

Answer: An Array of characters

30. Which of the following is an exit controlled loop?

a. While loop

b. For loop

c. do-while loop

d. None of the above

Answer: c. do-while loop

31. What is output of the below program?

int main()

{

 int i;

 for(i=0; i<5; ++i++)

 {

 printf("Hello");

 }

 return 0;

}

a. Hello is printed 5 times

b. Compilation Error

c. Hello is printed 2 times

d. Hello is printed 3 times

81

Answer: b. Compilation Error

32. Library function getch() belongs to which header file?

a. stdio.h

b. conio.h

c. stdlib.h

d. stdlibio.h

Answer: b. conio.h

 33. What should be the output :

int main()

{

 int a = 10/3;

 printf("%d",a);

 return 0;

}

a. 3.33

b. 3.0

c. 3

d. 0

Answer: c.3

34.Which of the following best describes the ordering of destructor calls for

stack-resident objects in a routine?

a. The first object created is the first object destroyed; last created is last

destroyed.

b. The first object destroyed is the last object destroyed; last created is first

destroyed.

82

c. Objects are destroyed in the order they appear in memory, the object with

the lowest memory address is destroyed first.

d. The order is undefined and may vary from compiler to compiler.

Answer: b. The first object destroyed is the last object destroyed; last

created is first destroyed.

35. What feature makes C++ so powerful?

a. Easy implementation

b. Reusing the old code

c. Easy memory management

d. All of the above

Answer: d.All of the above

36. The members of union can be accessed using ___.

a. Dot Operator (.)

b. And Operator (&)

c. Asterisk Operator (*)

d. Right Shift Operator (>)

 Answer: a. Dot Operator (.)

37. What is a function in C?

a. User defined data type

b. Block of code which can be reused

c. Declaration syntax

d. None of these

Answer: b. Block of code which can be reused

38. A C program contains ___.

a. At least one function

b. No function

83

c. No value from command line

d. All of these

Answer: a. At least one function

39.A recursive function in C ___.

a. Call itself again and again

b. Loop over a parameter

c. Return multiple values

d. None of these

Answer: a. Call itself again and again

40. Multiple values of the same variable can be tested using ___.

a. switch

b. for

c. Function

d. All of these

Answer: a. switch

41. Without a break statement in switch what will happen?

e. All cases will work properly

f. Cases will fall through after matching the first check

g. Switch will throw error

h. All of these

Answer: b. Cases will fall through after matching the first check

42. When all cases are unmatched which case is matched in a switch statement?

a. Default case

b. First case

84

c. No case

d. None of these

Answer: a. Default case

43.What will be the output of the following C code?

#include <stdio.h>

int main(){

 char grade = 'B';

 switch (grade) {

 case 'A':

 printf("Excellent!\n");

 case 'B':

 case 'C':

 printf("Well done\n");

 case 'D':

 printf("You passed\n");

 case 'F':

 printf("Better try again\n");

 break;

85

 default:

 printf("Invalid grade\n");

 }

}

a. Well done

b. You passed

c. Better try again

d. All of these

Answer: d. All of these

44. Loops in C programming are used to ___.

a. Execute a statement based on a condition

b. Execute a block of code repeatedly

c. Create a variable

d. None of these

Answer: b. Execute a block of code repeatedly

45. Which of these is an exit-controlled loop?

a. for

b. if

c. do...while

d. while

Answer: c. do...while

86

46.Which statements are used to change the execution sequence?

a. Loop control statement

b. Function statement

c. Conditional statement

d. All of these

Answer: a. Loop control statement

47. What will happen if the loop condition will never become false?

a. Program will throw an error

b. Program will loop infinitely

c. Loop will not run

d. None of these

Answer: b. Program will loop infinitely

48. Which of the following is not an arithmetic expression?

a. x = 10

b. x /= 10

c. x %= 10

d. x != 10

Answer: d. x != 10

49.What will be the output of the following C code?

#include <stdio.h>

int main()

87

{

 int x = 20;

 x %= 3;

 printf("%d",x);

 return 0;

}

a. 2

b. 2.5

c. Error

d. Warning

Answer: a. 2

50. What will be the output of the following C code?

#include <stdio.h>

int main()

{

 float x = 23.456;

 printf("%.2f",x);

 return 0;

}

88

a. 23.45600

b. 23.456

c. 23.45

d. 23.46

Answer: d. 23.46

51. For which type, the format specifier "%i" is used?

a. int

b. char

c. float

d. double

Answer: a. int

52. What is the difference between float and double in C?

a. Both are used for the same purpose

b. Double can store just double value as compare to float value

c. Double is an enhanced version of float and was introduced in C99

d. Double is more precise than float and can store 64 bits

Answer: d. Double is more precise than float and can store 64 bits

53.Which is the correct format specifier for double type value in C?

a. %d

b. %f

c. %lf

d. %LF

Answer: c. %lf

89

54. What is the correct syntax to declare a variable in C?

a. data_type variable_name;

b. data_type as variable_name;

c. variable_name data_type;

d. variable_name as data_type;

Answer: a. data_type variable_name;

55.What will be the output of the following C code?

 #include <stdio.h>

 int main(){

 int i, j;

 for (i = 2; i < 10; i++) {

 for (j = 2; j <= (i / j); j++)

 if (!(i % j))

 break;

 if (j > (i / j))

 printf("%d ", i);

 }

 return 0;

}

90

a. 2 3 4 5 6 7 8 9

b. 3 5 7 9

c. 2 3 5 7

d. 2 3 5 7 11

Answer: c. 2 3 5 7

56. What is the keyword used to declare a C file pointer.?

a. file

b. FILE

c. FILEFP

d. filefp

Answer: b. FILE

57. What are the primary iterations in C programming?

a. While loop

b. Do while loop

c. For loop

d. All of the above

Answer: d. All of the above

58. What is scanf() in c programming?

a. The layout of an input string

b. Array

c. Output function

d. All of the above

Answer: a) Layout of an input string.

91

59. What is a function?

e. Looping code

f. Code that operates when called

g. Unknown variable

h. All of the above

Answer: b) Code that operates when called.

60. What of the following is true?

a. Variables are functions

b. Variable is a type of output command

c. Variables are used to store values

d. All of the above

Answer: c) Variables are used to store values.

61. What will be the output of the following code segment?

 int x=24, y=39, z=45

 z=x+y;

 y=z-y;

 x=z-y;

 printf("\n%d%d%d",x,y,z);

a. 24 39 63

b. 39 24 63

c. 24 39 45

92

d. 39 24 45

Answer: b. 39 24 63

62. Which operators are used to compare the values of operands to produce logical

value in C language?

e. Logical operator

f. Relational operator

g. Assignment operator

h. None of the above

Answer: b. Relational operator

63. while assigning a value to a variable, which operators are used to perform

arithmetic operations?

i. Logical operator

j. Assignment operator

k. Increment operator

l. Conditional operator

Answer: b. Assignment operator

64. Which operators perform operations on data in binary level?

a. Logical operator

b. Bitwise operator

c. Additional operators

d. None of the above

Answer: b. Bitwise operator

65. An external variable is one

e. Which resides in the memory till the end of the program

f. Which is globally accessible by all functions

93

g. Which is declared outside the body of any function

h. All of the above

Answer: d. All of the above

66. The operator "&" is used for

a. Bitwise AND

b. Bitwise OR

c. Logical AND

d. Logical OR

Answer: a. Bitwise AND

67. Which are built-in data structures in C programming?

a. Arrays

b. Structures

c. Files

d. All of the above

Answer: d. All of the above

68. Which is the correct sequence statements that swaps values of two statements?

a. a=a+b; a=a-b; b=a-b;

b. a=a+b, b=a-b; a=a-b;

c. a=a-b; a=a+b; b=b-a;

d. None of these

Answer: b. a=a+b, b=a-b; a=a-b;

69. By default a real number is treated as a

a. float

b. double

94

c. long double

d. integer

Answer: a. float

70. In an assignment statement a=b; which of the following statement is true ?

a. The variable a and the variable b are same.

b. The value of b is assigned to variable a but if b changes later, it will not effect the

value of variable a.

c. The value of b is assigned to variable a but if b changes later, it will effect the

value of variable a

d. The value of variable a is assigned to variable b, and the value of variable b is

asssigned to variable a.

Answer: b.The value of b is assigned to variable a but if b changes later, it will not effect

the value of variable a.

 71. Which of the following is responsible for conversion of C programs to machine

language ?

a. Operating system

b. An editor

c. A compiler

d. An interpreter

 Answer: c. A compiler

72. If a=8, b=3 and c=-5 are integers, then value of a*b/c is

a. -4

b. -2.8

c. +2.8

d. +3

 Answer: a. -4

95

73. Which of the following is a valid string constant?

a. "programming"

b. "programming

c. 'programming

d. $programming$

Answer: a. "programming"

74. Which of the following cannot be used as identifiers?

a. Letters

b. Digits

c. Underscores

d. Spaces

Answer: d. Spaces

75. What is the return type of ftell function?

a. double

b. int

c. long

d. D float

Answer: c. long

76. The result of a relational operator is always

a. either True or False

b. is less than or is more than

c. is equal or less or more

d. All of these

Answer:a. either True or False

96

77. Maximum value of an unsigned integer is

a. 65535

b. 32767

c. -32767

d. -65535

Answer: a. 65535

78.What will happen if in a C program you assign a value to an array element whose

subscript exceeds the size of array?

a. The element will be set to 0.

b. The compiler would report an error.

c. The program may crash if some important data gets overwritten.

d. The array size would appropriately grow.

Answer: a. The element will be set to 0.

79.C programs are converted into machine language with the help of

a. An Editor

b. A compiler

c. An operating system

d. None of the above

Answer:b. A compiler

80. A C variable cannot start with

a. An alphabet

b. A number

https://www.gkseries.com/computer-engineering/c-programming/c-programming-basics/c-language-multiple-choice-questions-and-answers-5#second
https://www.gkseries.com/computer-engineering/c-programming/c-programming-basics/c-language-multiple-choice-questions-and-answers-5#second

97

c. A special symbol other than underscore

d. both (b) and (c)

Answer: d. both (b) and (c)

81. Which of the following is allowed in a C Arithmetic instruction

a. []

b. {}

c. ()

d. None of the above

Answer: c. ()

82. Which of the following shows the correct hierarchy of arithmetic operations

in C

a. / + * -

b. * - / +

c. + - / *

d. * / + -

Answer: d. * / + -

83. What is an array?

a. An array is a collection of variables that are of the dissimilar data type.

b. An array is a collection of variables that are of the same data type.

c. An array is not a collection of variables that are of the same data type.

d. None of the above.

Answer: b. An array is a collection of variables that are of the same data type.

84. What is right way to Initialization array?

a. int num[6] = { 2, 4, 12, 5, 45, 5 } ;

98

b. int n{} = { 2, 4, 12, 5, 45, 5 } ;

c. int n{6} = { 2, 4, 12 } ;

d. int n(6) = { 2, 4, 12, 5, 45, 5 } ;

Answer:a. int num[6] = { 2, 4, 12, 5, 45, 5 } ;

85. An array elements are always stored in _________ memory locations.

a. Sequential

b. Random

c. Sequential and Random

d. None of the above

Answer: a. Sequential

86. What is the right way to access value of structure variable book{ price, page

}?

a. printf("%d%d", book.price, book.page);

b. printf("%d%d", price.book, page.book);

c. printf("%d%d", price::book, page::book);

d. printf("%d%d", price->book, page->book);

Answer: a. printf("%d%d", book.price, book.page);

87. perror() function used to ?

a. Work same as printf()

b. prints the error message specified by the compiler

c. prints the garbage value assigned by the compiler

d. None of the above

Answer: b. prints the error message specified by the compiler

88. Bitwise operators can operate upon?

a. double and chars

99

b. floats and doubles

c. int and float

d. int and char

Answer: d. int and char

89. What is C Tokens?

a. The smallest individual units of c program

b. The basic element recognized by the compiler

c. The largest individual units of program

d. A & B Both

Answer:d. A & B Both

90. What is Keywords?

a. Keywords have some predefine meanings and these meanings can be changed.

b. Keywords have some unknown meanings and these meanings cannot be

changed.

c. Keywords have some predefine meanings and these meanings cannot be

changed.

d. None of the above

Answer:c. Keywords have some predefine meanings and these meanings cannot be

changed.

91. What is constant?

a. Constants have fixed values that do not change during the execution of a

program

b. Constants have fixed values that change during the execution of a program

c. Constants have unknown values that may be change during the execution of a

program

d. None of the above

100

Answer:a. Constants have fixed values that do not change during the execution of a

program

92. Which is the right way to declare constant in C?

a. int constant var =10;

b. int const var = 10;

c. const int var = 10;

d. B & C Both

Answer:d. B & C Both

93. Which operators are known as Ternary Operator?

a. ::, ?

b. ?, :

c. ?, ;;

d. None of the above

Answer:b. ?, :

94. In switch statement, each case instance value must be _______?

a. Constant

b. Variable

c. Special Symbol

d. None of the above

Answer:a. Constant

