

DEPARTMENT OF COMPUTER SCIENCE

&

COMPUTER APPLICATION

LEARNING RESOURCE

JAVA Programming

2

 INTRODUCTION

Java programming language was originally developed by Sun

Microsystems which was initiated by James Gosling and released

in 1995 as core component of Sun Microsystems' Java platform

(Java 1.0 [J2SE]).

The latest release of the Java Standard Edition is Java SE 8. With

the advancement of Java and its widespread popularity, multiple

configurations were built to suit various types of platforms. For

example: J2EE for Enterprise Applications, J2ME for Mobile

Applications.

The new J2 versions were renamed as Java SE, Java EE, and Java

ME respectively. Java is guaranteed to be Write Once, Run

Anywhere.

Java is:

 Object Oriented: In Java, everything is an Object. Java

can be easily extended since it is based on the Object

model.

 Platform Independent: Unlike many other programming

languages including C and C++, when Java is compiled, it is

not compiled into platform specific machine, rather into

platform independent byte code. This byte code is

distributed over the web and interpreted by the Virtual

Machine (JVM) on whichever platform it is being run on.

3

 Simple: Java is designed to be easy to learn. If you

understand the basic concept of OOP Java, it would be easy

to master.

 Secure: With Java's secure feature it enables to develop

virus-free, tamper-free systems. Authentication techniques

are based on public-key encryption.

 Architecture-neutral: Java compiler generates an

architecture-neutral object file format, which makes the

compiled code executable on many processors, with the

presence of Java runtime system.

 Portable: Being architecture-neutral and having no

implementation dependent aspects of the specification

makes Java portable. Compiler in Java is written in ANSI C

with a clean portability boundary, which is a POSIX subset.

 Robust: Java makes an effort to eliminate error prone

situations by emphasizing mainly on compile time error

checking and runtime checking.

 Multithreaded: With Java's multithreaded feature it is

possible to write programs that can perform many tasks

simultaneously. This design feature allows the developers

to construct interactive applications that can run smoothly.

 Interpreted: Java byte code is translated on the fly to

native machine instructions and is not stored anywhere. The

4

development process is more rapid and analytical since the

linking is an incremental and light-weight process.

 High Performance: With the use of Just-In-Time

compilers, Java enables high performance.

 Distributed: Java is designed for the distributed environment of the

internet.

 Dynamic: Java is considered to be more dynamic than C or

C++ since it is designed to adapt to an evolving

environment. Java programs can carry extensive amount of

run-time information that can be used to verify and resolve

accesses to objects on run-time.

History of Java

James Gosling initiated Java language project in June 1991 for use

in one of his many set- top box projects. The language, initially

called „Oak‟ after an oak tree that stood outside Gosling's office,

also went by the name „Green‟ and ended up later being renamed as

Java, from a list of random words.

Sun released the first public implementation as Java 1.0 in 1995. It

promised Write Once, Run Anywhere (WORA), providing no-

cost run-times on popular platforms.

On 13 November, 2006, Sun released much of Java as free and

open source software under the terms of the GNU General Public

License (GPL).

On 8 May, 2007, Sun finished the process, making all of Java's

core code free and open- source, aside from a small portion of code

5

public class MyFirstJavaProgram {

public static void main(String []args) {

System.out.println("Hello World");

}

}

to which Sun did not hold the copyright.

You will also need the following softwares:

 Linux 7.1 or Windows xp/7/8 operating system

 Java JDK 8

 Microsoft Notepad or any other text editor

This tutorial will provide the necessary skills to create GUI,

networking, and web applications using Java.

 Java - Environment Setup

Java Programming environment setup online, so that you can

compile and execute all the available examples online at the same

time when you are doing your theory work. This gives you

confidence in what you are reading and to check the result with

different options. Feel free to modify any example and execute it

online.

Try the following example using Try it option available at the top

right corner of the following sample code box:

For most of the examples given in this tutorial, you will find the

6

Try it option, which you can use to execute your programs and

enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Java

programming language, then this section guides you on how to

download and set up Java on your machine. Following are the

steps to set up the environment.

Java SE is freely available from the link Download Java. You can

download a version based on your operating system.

Follow the instructions to download Java and run the .exe to install

Java on your machine. Once you installed Java on your machine,

you will need to set environment variables to point to correct

installation directories:

Setting Up the Path for Windows

Assuming you have installed Java in c:\Program Files\java\jdk directory:

 Right-click on 'My Computer' and select 'Properties'.

 Click the 'Environment variables' button under the 'Advanced' tab.

 Now, alter the 'Path' variable so that it also contains the path

to the Java executable. Example, if the path is currently set to

'C:\WINDOWS\SYSTEM32', then change your path to read

'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Setting Up the Path for Linux, UNIX, Solaris, FreeBSD

Environment variable PATH should be set to point to where the

Java binaries have been installed. Refer to your shell

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

7

documentation, if you have trouble doing this.

Example, if you use bash as your shell, then you would add the

following line to the end of your '.bashrc: export

PATH=/path/to/java:$PATH'

Popular Java Editors

To write your Java programs, you will need a text editor. There are

even more sophisticated IDEs available in the market. But for now,

you can consider one of the following:

 Notepad: On Windows machine, you can use any simple

text editor like Notepad (Recommended for this tutorial),

TextPad.

 Netbeans: A Java IDE that is open-source and free, which

can be downloaded from

http://www.netbeans.org/index.html.

 Eclipse: A Java IDE developed by the eclipse open-source

community and can be downloaded from

http://www.eclipse.org/.

Java – Basic Syntax

 Object - Objects have states and behaviors. Example: A

dog has states - color, name, breed as well as behavior such

as wagging their tail, barking, eating. An object is an

instance of a class.

http://www.netbeans.org/index.html
http://www.eclipse.org/

8

public class MyFirstJavaProgram {

/* This is my first java program.

* This will print 'Hello World' as the output

*/

public static void main(String []args) { System.out.println("Hello World"); //

prints Hello World

}

}

 Class - A class can be defined as a template/blueprint that

describes the behavior/state that the object of its type

supports.

 Methods - A method is basically a behavior. A class can

contain many methods. It is in methods where the logics are

written, data is manipulated and all the actions are

executed.

 Instance Variables - Each object has its unique set of

instance variables. An object's state is created by the values

assigned to these instance variables.

First Java Program

Let us look at a simple code that will print the words Hello World.

Let's look at how to save the file, compile, and run the

program. Please follow the subsequent steps:

 Open notepad and add the code as above.

9

C:\> javac MyFirstJavaProgram.java C:\> java

MyFirstJavaProgram Hello World

 Save the file as: MyFirstJavaProgram.java.

 Open a command prompt window and go to the directory

where you saved the class. Assume it's

 Type 'javac MyFirstJavaProgram.java' and press enter to

compile your code. If there are no errors in your code, the

command prompt will take you to the next line (Assumption

: The path variable is set).

 Now, type ' java MyFirstJavaProgram ' to run your program.

 You will be able to see ' Hello World ' printed on the window.

Basic Syntax

About Java programs, it is very important to keep in mind the following points.

 Case Sensitivity - Java is case sensitive,

 which means identifier Helloand hello

would have different meaning in Java.

 Class Names - For all class names the first letter should be in Upper

Case.

If several words are used to form a name of the class, each

10

inner word's first letter should be in Upper Case.

Example: class MyFirstJavaClass

 Method Names - All method names should start with a Lower Case

letter.

If several words are used to form the name of the method,

then each inner word's first letter should be in Upper Case.

Example: public void myMethodName()

 Program File Name - Name of the program file should

exactly match the class name.

When saving the file, you should save it using the class

name (Remember Java is case sensitive) and append '.java' to

the end of the name (if the file name and the class name do

not match, your program will not compile).

Example: Assume 'MyFirstJavaProgram' is the class name.

Then the file should be saved as 'MyFirstJavaProgram.java'

 public static void main(String args[]) - Java program

processing starts from the main() method which is a

mandatory part of every Java program.

Java Identifiers

11

All Java components require names. Names used for classes,

variables, and methods are called identifiers.

In Java, there are several points to remember about identifiers. They are as

follows:

 All identifiers should begin with a letter (A to Z or a to z),

currency character ($) or an underscore (_).

 After the first character, identifiers can have any combination of

characters.

 A key word cannot be used as an identifier.

 Most importantly, identifiers are case sensitive.

 Examples of legal identifiers: age, $salary, _value, 1_value.

 Examples of illegal identifiers: 123abc, -salary.

Java Modifiers

Like other languages, it is possible to modify classes, methods,

etc., by using modifiers. There are two categories of modifiers:

 Access Modifiers: default, public , protected, private

 Non-access Modifiers: final, abstract, strictfp

We will be looking into more details about modifiers in the next section.

12

Java Variables

Following are the types of variables in Java:

 Local Variables

 Class Variables (Static Variables)

 Instance Variables (Non-static Variables)

Java Arrays

Arrays are objects that store multiple variables of the same type.

However, an array itself is an object on the heap.

Java Enums

Enums were introduced in Java 5.0. Enums restrict a variable to

have one of only a few predefined values. The values in this

enumerated list are called enums.

With the use of enums it is possible to reduce the number of bugs in your code.

For example, if we consider an application for a fresh juice shop, it

would be possible to restrict the glass size to small, medium, and

large. This would make sure that it would not allow anyone to order

any size other than small, medium, or large.

13

class FreshJuice {

enum FreshJuiceSize{ SMALL, MEDIUM, LARGE }

FreshJuiceSize size;

}

public class FreshJuiceTest {

public static void main(String args[]){ FreshJuice

juice = new FreshJuice();

juice.size = FreshJuice.FreshJuiceSize.MEDIUM ;

System.out.println("Size: " + juice.size);

}

}

Size: MEDIUM

Example

The above example will produce the following result:

Note: Enums can be declared as their own or inside a class.

Methods, variables, constructors can be defined inside enums as well.

Java Keywords

The following list shows the reserved words in Java. These

reserved words may not be used as constant or variable or any other

identifier names.

abstract assert boolean break

byte case catch char

14

class const continue default

do double else enum

extends final finally float

for goto if implements

import instanceof int interface

long native new package

private protected public return

short static strictfp super

switch synchronized this throw

throws transient try void

volatile while

Comments in Java

Java supports single-line and multi-line comments very similar to C

and C++. All characters available inside any comment are ignored by

Java compiler.

15

public class MyFirstJavaProgram{

/* This is my first java program.

* This will print 'Hello World' as the output

* This is an example of multi-line comments.

*/

public static void main(String []args){

// This is an example of single line comment

/* This is also an example of single line comment. */ System.out.println("Hello World");

}

}

Using Blank Lines

A line containing only white space, possibly with a comment, is

known as a blank line, and Java totally ignores it.

Inheritance

In Java, classes can be derived from classes. Basically, if you need

to create a new class and here is already a class that has some of

the code you require, then it is possible to derive your new class

from the already existing code.

This concept allows you to reuse the fields and methods of the

existing class without having to rewrite the code in a new class. In

this scenario, the existing class is called the superclass and the

derived class is called the subclass.

Interfaces

In Java language, an interface can be defined as a contract between

objects on how to communicate with each other. Interfaces play a

vital role when it comes to the concept of inheritance.

16

An interface defines the methods, a deriving class (subclass)

should use. But the implementation of the methods is totally up to

the subclass.

Java – Objects & Classes

Java is an Object-Oriented Language. As a language that has the

Object-Oriented feature, Java supports the following fundamental

concepts:

 Polymorphism

 Inheritance

 Encapsulation

 Abstraction

 Classes

 Objects

 Instance

 Method

 Message Parsing

In this chapter, we will look into the concepts - Classes and Objects.

 Object - Objects have states and behaviors. Example: A

dog has states - color, name, breed as well as behaviors –

wagging the tail, barking, eating. An object is an instance of

a class.

 Class - A class can be defined as a template/blueprint that

describes the behavior/state that the object of its type

support.

17

Objects in Java

All these objects have a state and a behavior.object with a real-

world object, they have very similar characteristics.

Software objects also have a state and a behavior. A software

object's state is stored in fields and behavior is shown via methods.

So in software development, methods operate on the internal state

of an object and the object-to-object communication is done via

methods.

Classes in Java

A class is a blueprint from which individual

objects are created. Following is a sample of

a class.

A class can contain any of the following variable types.

 Local variables: Variables defined inside methods,

public class

Dog{ String

breed; int

ageC String

color;

void barking(){

}

void hungry(){

}

void sleeping(){

}

}

18

constructors or blocks are called local variables. The

variable will be declared and initialized within the method

and the variable will be destroyed when the method has

completed.

 Instance variables: Instance variables are variables within

a class but outside any method. These variables are initialized

when the class is instantiated. Instance variables can be

accessed from inside any method, constructor or blocks of

that particular class.

 Class variables: Class variables are variables declared

within a class, outside any method, with the static keyword.

A class can have any number of methods to access the value of

various kinds of methods. In the above example, barking(),

hungry() and sleeping() are methods.

Following are some of the important topics that need to be

discussed when looking into classes of the Java Language.

Constructors

When discussing about classes, one of the most important sub topic

would be constructors. Every class has a constructor. If we do not

explicitly write a constructor for a class, the Java compiler builds a

default constructor for that class.

Each time a new object is created, at least one constructor will be

invoked. The main rule of constructors is that they should have the

same name as the class. A class can have more than one

19

public class

Puppy{ public

Puppy(){

}

public Puppy(String name){

// This constructor has one parameter, name.

}

}

constructor.

Following is an example of a constructor:

Java also supports Singleton Classes where you would be able to

create only one instance of a class.

The Singleton's purpose is to control object creation, limiting the

number of objects to only one. Since there is only one Singleton

instance, any instance fields of a Singleton will occur only once per

class, just like static fields. Singletons often control access to

resources, such as database connections or sockets.

For example, if you have a license for only one connection for your

database or your JDBC driver has trouble with multithreading, the

Singleton makes sure that only one connection is made or that only

one thread can access the connection at a time.

Implementing Singletons

Example 1

The easiest implementation consists of a private constructor and a

field to hold its result, and a static accessor method with a name

http://www.tutorialspoint.com/java/java_using_singleton.htm

20

// File Name:

Singleton.java public class

Singleton {

private static Singleton singleton = new Singleton();

/* A private Constructor prevents any other

* class from instantiating.

*/

private Singleton(){ }

/* Static 'instance' method */

public static Singleton getInstance() {

return singleton;

}

/* Other methods protected by singleton-ness

*/ protected static void demoMethod() {

System.out.println("demoMethod for singleton");

}

}

like getInstance().

The private field can be assigned from within a static initializer

block or, more simply, using an initializer. The getInstance()

method (which must be public) then simply returns this instance

The ClassicSingleton class maintains a static reference to the lone

21

singleton instance and returns that reference from the static

getInstance() method.

Here, ClassicSingleton class employs a technique known as lazy

instantiation to create the singleton; as a result, the singleton

instance is not created until the getInstance() method is called for the

first time. This technique ensures that singleton instances are

created only when needed.

Creating an Object

As mentioned previously, a class provides the blueprints for objects.

So basically, an object is created from a class. In Java, the new

keyword is used to create new objects.

There are three steps when creating an object from a class:

 Declaration: A variable declaration with a variable name with an object

type.

 Instantiation: The 'new' keyword is used to create the object.

 Initialization: The 'new' keyword is followed by a call to a

constructor. This call initializes the new object.

Following is an example of creating an object:

22

public class Puppy{

public Puppy(String name){

// This constructor has one parameter, name.

System.out.println("Passed Name is :" + name);

}

public static void main(String []args){

// Following statement would create an object myPuppy Puppy myPuppy = new

Puppy("tommy");

}

}

Passed Name is :tommy

/* First create an object */ ObjectReference =

new Constructor();

/* Now call a variable as follows */

ObjectReference.variableName;

/* Now you can call a class method as follows */

ObjectReference.MethodName();

If we compile and run the above program, then it will produce the following

result:

Accessing Instance Variables and Methods

Instance variables and methods are accessed via created objects. To

access an instance variable, following is the fully qualified path:

Source File Declaration Rules

23

As the last part of this section, let's now look into the source file

declaration rules. These rules are essential when declaring classes,

import statements and package statements in a source file.

 There can be only one public class per source file.

 A source file can have multiple non-public classes.

 The public class name should be the name of the source file

as well which should be appended by .java at the end. For

example: the class name is public class Employee{} then the

source file should be as Employee.java.

 If the class is defined inside a package, then the package

statement should be the first statement in the source file.

 If import statements are present, then they must be written

between the package statement and the class declaration. If

there are no package statements, then the import statement

should be the first line in the source file.

 Import and package statements will imply to all the classes

present in the source file. It is not possible to declare

different import and/or package statements to different

classes in the source file.

Classes have several access levels and there are different types of

classes; abstract classes, final classes, etc. We will be explaining

about all these in the access modifiers chapter.

Apart from the above mentioned types of classes, Java also has some

special classes called Inner classes and Anonymous classes.

24

String

Every string we create is actually an object of type String.

 String constants are actually String objects.

Example:

System.out.println("This is a String, too");

 Objects of type String are immutable i.e. once a String object is created, its

contents cannot be altered.

 String Class

 The java.lang.String class implements Serializable, Comparable and

CharSequence interfaces.

25

 CharSequence Interface

 The CharSequence interface is used to represent sequence of characters. It is

implemented by String, StringBuffer and StringBuilder classes. It means, we

can create string in java by using these 3 classes.

 In java, 4 predefined classes are provided that either represent strings or

provide functionality to manipulate them. Those classes are:

◦ String

◦ StringBuffer

◦ StringBuilder

◦ StringTokenizer

String, StringBuffer, and StringBuilder classes are defined in java.lang

package and all are final.

All of them implement the CharSequence interface.

 How to create String object?

26

There are two ways to create String object:

By string literal

By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

 String s="welcome";

Each time you create a string literal, the JVM checks the string constant pool

first. If the string already exists in the pool, a reference to the pooled instance

is returned. If string doesn't exist in the pool, a new string instance is created

and placed in the pool. For example:

 String s1="Welcome";

 String s2="Welcome";

Note: String objects are stored in a special memory area known as string

constant pool.

 2) By new keyword

27

 String s=new String("Welcome");

 In such case, JVM will create a new string object in normal(non pool) heap

memory and the literal "Welcome" will be placed in the string constant pool.

The variable s will refer to the object in heap(non pool).

Java String Example

 public class StringExample

 { public static void

main(String args[])

{

String s1="java";

//creating string by java

string literal char

ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);

//converting char array to string

String s3=new String("example");

//creating java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}

}

 Why String Handling?

String handling is required to perform following operations on some string:

Compare two strings

Search for a substring

Concatenate two strings

28

Change the case of letters within a string

 Creating String objects

 class StringDemo

{

public static void main(String args[])

{

String strOb1 = “Java”;

String strOb2 =

“Programming”;

String strOb3 = strOb1 + " and " + strOb2;

 System.out.println(strOb1);

 System.out.println(strOb2);

 System.out.println(strOb3);

}

}

 String Constructor

public

String

()

public

String

(String

)

public

String

(char

29

[])

public

String

(byte

[])

public String (char [], int offset, int no_of_chars) public String

(byte [], int offset, int no_of _bytes)

 Examples

char [] a = {'c', 'o', 'n', 'g', 'r', 'a', 't', 's'};

byte [] b = {82, 65, 86, 73, 75, 65, 78, 84};

String s1 = new String (a); System.out.println(s1);

String s2 = new String (a, 1,5); System.out.println(s2);

String s3 = new String (s1); System.out.println(s3);

String s4 = new String (b); System.out.println(s4);

String s5 = new String (b, 4, 4); System.out.println(s5);

 String Concatenation

 Concatenating Strings:

String age = "9";

String s = "He is " + age + " years old."; System.out.println(s);

 Using concatenation to prevent long lines:

30

String longStr = “This could have been” +

“a very long line that would have” +

“wrapped around. But string”+

“concatenation prevents this.”;

System.out.println(longStr);

 String Concatenation with Other Data Types

 We can concatenate strings with other types of data.

Example:

int age = 9;

String s = "He is " + age + " years old.";

System.out.println(s);

 Methods of String class

1.String Length:

length() returns the length of the string i.e. number of characters.

 public int length()

Example:

char chars[] = { 'a', 'b', 'c'

}; String s = new

String(chars);

System.out.println(s.length());

2. concat(): used to concatenate two strings. String

31

concat(String str)

 This method creates a new object that contains the invoking string with the

contents of str appended to the end.

 concat() performs the same function as +.

Example:

String s1 = "one"; String s2 = s1.concat("two");

 It generates the same result as the following sequence: String s1 = "one";

String s2 = s1 + "two";

 Character Extraction

3. charAt(): used to obtain the character from the specified index from a string.

public char charAt (int index);

4. toCharArray(): returns a character array initialized by the contents of

the string. public char [] toCharArray();

Example: String s = “India”; char c[] =

s.toCharArray(); for (int

i=0; i<c.length; i++)

{ if (c[i]>= 65 && c[i]<=90) c[i] += 32;

System.out.print(c[i]); }

5. getChars(): used to obtain set of characters from the string.

public void getChars(int start_index, int end_index, char[], int offset)

Example: String s = “KAMAL”; char b[] = new char [10]; b[0] = „N‟; b[1] =

„E‟; b[2] = „E‟; b[3] = „L‟; s.getChars(0, 4, b, 4);

32

System.out.println(b);

STRING COMPARISON

 There are three ways to compare string in java:

1.By equals() method

2.By = = operator

3.By compareTo() method

 1. By equals() Method

 equals(): used to compare two strings for equality. Comparison is case-

sensitive.

 public boolean equals (Object str)

 equalsIgnoreCase(): To perform a comparison that ignores case differences.

Note:

 This method is defined in Object class and overridden in String class.

 equals(), in Object class, compares the value of reference not the content.

 In String class, equals method is overridden for content-wise comparison of

two strings.

 Example

class equalsDemo { public static void

main(String args[]) {

String s1 = "Hello";

String s2 = "Hello";

String s3 = "Good-bye";

String s4 = "HELLO";

System.out.println(s1 + " equals " + s2 + " -> " +

s1.equals(s2));

System.out.println(s1 + " equals " + s3 + " -> " +

s1.equals(s3));

System.out.println(s1 + " equals " + s4 + " -> " +

33

s1.equals(s4));

System.out.println(s1 + " equalsIgnoreCase " + s4 + " ->

 “ +s1.equalsIgnoreCase(s4));

}

}

2. String compare by == operator

 The = = operator compares references not values.

class Teststringcomparison3

{ public static void

main(String args[])

{

String s1="Sachin"; String s2="Sachin";

String s3=new String("Sachin");

System.out.println(s1==s2);

//true (because both refer to same instance)

System.out.println(s1==s3);

//false(because s3 refers to instance created in

nonpool) }

}

 3. String compare by compareTo() method

 The String compareTo() method compares values lexicographically and returns an

integer value that

 describes if first string is less than, equal to or greater than second string.

 Suppose s1 and s2 are two string variables. If:

 s1 == s2 :0

 s1 > s2 :positive value s1 < s2 :negative value

 String Comparison

34

 startsWith() and endsWith():

◦ The startsWith() method determines whether a given String begins with a

specified string.

◦ Conversely, endsWith() determines whether the String in question ends

with a specified string.

boolean startsWith(String str) boolean endsWith(String str)

 Example

String s="Sachin";

System.out.println(s.startsWith("Sa"));

//true

System.out.println(s.endsWith("n"));

//true

 String Comparison

compareTo():

 A string is less than another if it comes before the other in dictionary

order.

 A string is greater than another if it comes after the other in dictionary

order. int compareTo(String str)

 Example

class SortString { static String arr[] = {"Now", "is", "the", "time", "for",

"all", "good", "men",

 "to", "come", "to", "the", "aid", "of", "their", "country"};

public static void main(String args[]) { for(int j = 0; j < arr.length; j++) { for(int

i = j + 1; i < arr.length; i++) { if(arr[i].compareTo(arr[j]) < 0) { String t

35

= arr[j]; arr[j] = arr[i];

 arr[i] = t;

}

}

System.out.println(arr[j]);

}

}

}

 Searching Strings

 The String class provides two methods that allow us to search a string for a

specified character or substring:

indexOf(): Searches for the first occurrence of a character or

substring. int indexOf(int ch)

lastIndexOf(): Searches for the last occurrence of a character or

substring. int lastIndexOf(int ch)

 To search for the first or last occurrence of a substring, use int indexOf(String

str) int lastIndexOf(String str)

 We can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex) int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex) int lastIndexOf(String str, int

startIndex)

 Here, startIndex specifies the index at which point the search begins.

 For indexOf(), the search runs from startIndex to the end of the string.

 For lastIndexOf(), the search runs from startIndex to zero.

 Example

class indexOfDemo {

public static void main(String args[]) {

String s = "Now is the time for all good men " +

36

"to come to the aid of their country.";

System.out.println(s);

System.out.println("indexOf(t) = " + s.indexOf('t'));

System.out.println("lastIndexOf(t) = " + s.lastIndexOf('t'));

System.out.println("indexOf(the) = " + s.indexOf("the"));

System.out.println("lastIndexOf(the) = " + s.lastIndexOf("the"));

System.out.println("indexOf(t, 10) = " + s.indexOf('t', 10));

System.out.println("lastIndexOf(t, 60) = " + s.lastIndexOf('t', 60));

System.out.println("indexOf(the, 10) = " + s.indexOf("the", 10));

System.out.println("lastIndexOf(the, 60) = " + s.lastIndexOf("the", 60));

}

}

Modifying a String

 Because String objects are immutable, whenever we want to modify a String, it

will construct a new copy of the string with modifications.

 substring(): used to extract a part of a string.

public String substring (int start_index) public

String substring (int start_index, int

end_index)

Example: String s = “ABCDEFG”;

String t = s.substring(2); System.out.println (t);

String u = s.substring (1, 4); System.out.println (u);

Note: Substring from start_index to end_index-1 will be returned.

 Example of java substring

public class TestSubstring

{

public static void main(String args[])

{

37

String s="SachinTendulkar";

System.out.println(s.substring(6));

//Tendulkar

System.out.println(s.substring(0,6));

//Sachin

}

}

replace(): The replace() method has two forms.

 The first replaces all occurrences of one character in the invoking string with

another character.

 It has the following general form:

String replace(char original, char replacement)

 Here, original specifies the character to be replaced by the character specified

by replacement.

Example: String s = "Hello".replace('l', 'w');

 The second form of replace() replaces one character sequence with another. It

has this general form:

String replace(CharSequence original, CharSequence replacement)

 Example:

String s1="Java is a programming language. Java is a plat form. Java is an

Island.";

String replaceString=s1.replace("Java","Kava");

//replaces all occurrences of "Java" to "Kava"

System.out.println(replaceString);

trim()

 The trim() method returns a copy of the invoking string from which any leading

and

 trailing whitespace has been removed.

38

S

tring trim() Example:

String s = " Hello World ".trim();

This puts the string “Hello World” into s.

 The string trim() method eliminates white spaces before and after string.

 Example

String s=" Sachin ";

System.out.println(s);// Sachin

System.out.println(s.trim());//Sachin

Changing the Case of Characters Within a String toLowerCase() &

toUpperCase()

 Both methods return a String object that contains the uppercase or lowercase

equivalent of the invoking String.

String

toLowerCase()

String

toUpperCase()

 Example

String s="Sachin";

System.out.println(s.toUpperCase()); //SACHIN

System.out.println(s.toLowerCase());

//sachin

System.out.println(s);

//Sachin(no change in original)

break Statement

continue Statement

return Statement

 break Statement

break statement has three uses:

39

Terminates a statement sequence in a switch statement

Used to exit a loop

Used as a “civilized” form of goto

The break statement has two forms:

Labeled

Unlabeled

Unlabeled break

An unlabeled break is used to terminate a for, while, or do-while loop and switch

statement.

 Labeled break Statement

Java defines an expanded form of the break statement. break label;

By using this form of break, we can break out of one or more blocks of code.

When this form of break executes, control is transferred out of the named block.

• An exception is an event, which occurs during the execution of a program, that

disrupts the normal flow of the program's instructions.

• An exception is an abnormal condition that arises in a code sequence at run time.

• A Java exception is an object that describes an exceptional (that is, error)

condition that has occurred in a piece of code.

• In other words, “An exception is a run-time error.”

Exception Handling

 An Exception is a run-time error that can be handled programmatically in the

application and does not result in abnormal program termination.

 Exception handling is a mechanism that facilitates programmatic

handling of run-time errors.

 In java, each run-time error is represented by an object.

40

Exception (Class Hierarchy)

• At the root of the class hierarchy, there is a class named „Throwable‟ which

represents the basic features of run-time errors.

• There are two non-abstract sub-classes of Throwable.

• Exception : can be handled • Error : can‟t be handled

• RuntimeException is the sub-class of Exception.

• Each exception is a run-time error but all run-time errors are not exceptions.

Checked Exception

 Checked Exceptions are those, that have to be either caught or declared to be

thrown in the method in which they are raised.

Unchecked Exception

 Unchecked Exceptions are those that are not forced by the compiler either to

be caught or to be thrown.

 Unchecked Exceptions either represent common programming errors or those

run-time errors that can‟t be handled through exception handling.

Commonly used sub-classes of Exception

 ArithmeticException

 ArrayIndexOutOfBoundsException

 NumberFormatException

 NullPointerException

 IOException

• When the Java run-time system detects the attempt to divide by zero, it

constructs a new exception object and then throws this exception.

41

• Once an exception has been thrown, it must be caught by an exception handler

and dealt with immediately.

Why Exception Handling?

 When the default exception handler is provided by the Java run-time

system , why Exception Handling?

 Exception Handling is needed because:

 It allows to fix the error, customize the message .

 It prevents the program from automatically terminating

 Exception Handling

Keywords for Exception Handling

 try

 catch

 throw

 throws

 finally

Keywords for Exception Handling try

 Java try block is used to enclose the code that might throw an exception. It

must be used within the method.

try {

Statements whose execution may cause an exception }

Note: try block is always used either with catch or finally or with both.

Keywords for Exception Handling catch

 catch is used to define a handler.

 It contains statements that are to be executed when the exception represented

by the catch block is generated.

42

 If program executes normally, then the statements of catch block will not

executed.

 If no catch block is found in program, exception is caught by JVM and

program is terminated.

 It must be used after the try block only.

 You can use multiple catch block with a single try.

43

Internal working of java try-catch block

Nested try block

• Sometimes a situation may arise where a part of a block may cause one error

and the entire block itself may cause another error. In such cases, exception

handlers have to be nested.

• Syntax:

•

• try

• {

• statement 1;

• statement 2;

• try

• {

• statement 1;

• statement 2;

• }

44

• catch(Exception e)

• {

• }

• }

• catch(Exception e)

• {

• }

•

Java finally block

 Java finally block is always executed whether exception is handled or not.

 Java finally block is a block that is used to execute important code such as

closing connection, stream etc.

 Java finally block follows try or catch block.

Multithreading

 Threads are the backbone of multithreading. We are living in a real-world which in

itself is caught on the web surrounded by lots of applications. With the advancement in

technologies we cannot achieve the speed required to run them simultaneously unless we

introduce the concept of multi tasking efficiently. It is achieved by the concept of thread.

Real-life Example

Suppose you are using two tasks at a time on the computer, be it using Microsoft Word and

listening to music. These two tasks are called processes. So you start typing in Word and at

the same time start music app, this is called multitasking. Now you committed a mistake in

a Word and spell check shows exception, this means Word is a process that is broken down

into sub-processes. Now if a machine is dual-core then one process or task is been handled

by one core and music is been handled by another core.

45

In the above example, we come across both multiprocessing and multithreading. These are

somehow indirectly used to achieve multitasking. In this way the mechanism of dividing the

tasks is called multithreading in which every process or task is called by a thread where a

thread is responsible for when to execute, when to stop and how long to be in a waiting state.

Hence, a thread is the smallest unit of processing whereas multitasking is a process of

executing multiple tasks at a time.

Multitasking is being achieved in two ways:

1. Multiprocessing: Process-based multitasking is a heavyweight process and occupies

different address spaces in memory. Hence, while switching from one process to another,

it will require some time be it very small, causing a lag because of switching. This

happens as registers will be loaded in memory maps and the list will be updated.

2. Multithreading: Thread-based multitasking is a lightweight process and occupies the

same address space. Hence, while switching cost of communication will be very less.

Below is the Lifecycle of a Thread been illustrated

1. New: When a thread is just created.

2. Runnable: When a start() method is called over thread processed by the thread scheduler.

 Case A: Can be a running thread

 Case B: Can not be a running thread

3. Running: When it hits case 1 means the scheduler has selected it to be run the thread

from runnable state to run state.

4. Blocked: When it hits case 2 meaning the scheduler has selected not to allow a thread to

change state from runnable to run.

5. Terminated: When the run() method exists or stop() method is called over a thread.

If we do incorporate threads in operating systems one can perceive that the process

scheduling algorithms in operating systems are strongly deep-down working on the same

concept incorporating thread in Gantt charts. A few of the most popular are listed below

which wraps up all of them and are used practically in software development.

46

 First In First Out

 Last In First Out

 Round Robin Scheduling

Now Imagine the concept of Deadlock in operating systems with threads – how the

switching is getting computed over internally if one only has an overview of them.

So far we have understood multithreading and thread conceptually, so we can

conclude advantages of multithreading before moving to any other concept or getting to

programs in multithreading.

 The user is not blocked as threads are independent even if there is an issue with one

thread then only the corresponding process will be stopped rest all the operations will be

computed successfully.

 Saves time as too many operations are carried over at the same time causing work to get

finished as if threads are not used the only one process will be handled by the processor.

 Threads are independent though sharing the same address space.

So we have touched all main concepts of multithreading but the question striving in the head

is left. why do we need it, where to use it and how? Now, we will discuss all three scenarios

why multithreading is needed and where it is implemented via the help of programs in which

we will be further learning more about threads and their methods. We need multithreading in

four scenarios as listed.

 Thread Class

 Mobile applications

 Asynchronous thread

 Web applications

 Game Development

Note: By default we only have one main thread which is responsible for main thread

exception as you have encountered even without having any prior knowledge of

multithreading

47

Two Ways to Implement Multithreading

 Using Thread Class

 Using Runnable Interface

Method 1: Using Thread Class

Java provides Thread class to achieve programming invoking threads thereby some major

methods of thread class are shown below in the tabular format with which we deal

frequently along the action performed by them.

Methods Action Performed

isDaemon() It checks whether the current thread is daemon or not

start() It starts the execution of the thread

run()
It does the executable operations statements in the body of this

method over a thread

sleep()
It is a static method that puts the thread to sleep for a certain time

been passed as an argument to it

wait() It sets the thread back in waiting state.

notify() It gives out a notification to one thread that is in waiting state

notifyAll() It gives out a notification to all the thread in the waiting state

setDaemon() It set the current thread as Daemon thread

stop() It is used to stop the execution of the thread

https://www.geeksforgeeks.org/java-lang-thread-class-java/
https://www.geeksforgeeks.org/runnable-interface-in-java/
https://www.geeksforgeeks.org/java-lang-thread-class-java/

48

Methods Action Performed

resume() It is used to resume the suspended thread.

Pre-requisites: Basic syntax and methods to deal with threads

Now let us come up with how to set the name of the thread. By default, threads are named

thread-0, thread-1, and so on. But there is also a method that is often used

 as setName() method. Also corresponding to it there is a method getName() which returns

the name of the thread be it default or settled already by using setName() method. The

syntax is as follows:

Syntax:

(a) Returning the name of the thread

public String getName() ;

(b) Changing the name of the thread

 public void setName(String name);

Taking a step further, let us dive into the implementation part to understand more concepts

about multithreading. So, there are basically two ways of implementing multithreading:

Illustration: Consider if one has to multiply all elements by 2 and there are 500 elements in

an array.

// Case 1

// Java Program to illustrate Creation and execution of

// thread via start() and run() method in Single inheritance

49

// Class 1

// Helper thread Class extending main Thread Class

class MyThread1 extends Thread {

 // Method inside MyThread2

 // run() method which is called as

 // soon as thread is started

 public void run()

 {

 // Print statement when the thread is called

 System.out.println("Thread1 is running");

 }

}

50

// Class 2

// Main thread Class extending main Thread Class

class MyThread2 extends Thread {

 // Method inside MyThread2

 // run() method which is called

 // as soon as thread is started

 public void run()

 {

 // run() method which is called as soon as thread is

 // started

 // Print statement when the thread is called

 System.out.println("Thread2 is running");

51

 }

}

// Class 3

// Main Class

class GFG {

 // Main method

 public static void main(String[] args)

 {

 // Creating a thread object of our thread class

 MyThread1 obj1 = new MyThread1();

 MyThread2 obj2 = new MyThread2();

52

 // Getting the threads to the run state

 // This thread will transcend from runnable to run

 // as start() method will look for run() and execute

 // it

 obj1.start();

 // This thread will also transcend from runnable to

 // run as start() method will look for run() and

 // execute it

 obj2.start();

 }

}

Output:

Case 1:

Thread1 is running

Thread2 is running

53

Here we have created our two thread classes for each thread. In the main method, we are

simply creating objects of these thread classes where objects are now threads. So in

main, we call thread using start() method over both the threads. Now start() method starts the

thread and lookup for their run() method to run. Here both of our thread classes were having

run() methods, so both threads are put to run state from runnable by the scheduler, and

output on the console is justified.

Case 2:

Thread 1 is running

Here we have created our two thread classes for each thread. In the main method, we are

simply creating objects of these thread classes where objects are now threads. So in main,

we call thread using start() method over both the threads. Now start() method starts the

thread and lookup their run() method to run. Here only class 1 is having the run() method to

make the thread transcend from runnable to run state to execute whereas thread 2 is only

created but not put to run state by the scheduler as its corresponding run() method was

missing. Hence, only thread 1 is called rest thread 2 is created only and is in the runnable

state later blocked by scheduler because the corresponding run() method was missing.

Case 3:

Thread 2

Thread 1 is running

Method 2: Using Runnable Interface

Another way to achieve multithreading in java is via the Runnable interface. Here as we

have seen in the above example in way 1 where Thread class is extended. Here Runnable

interface being a functional interface has its own run() method. Here classes are

implemented to the Runnable interface. Later on, in the main() method, Runnable reference

is created for the classes that are implemented in order to make bondage with Thread class to

run our own corresponding run() methods. Further, while creating an object of Thread class

we will pass these references in Thread class as its constructor allows only one runnable

object, which is passed as a parameter while creating Thread class object in a main()

54

method. Now lastly just like what we did in Thread class, start() method is invoked over the

runnable object who are now already linked with Thread class objects, so the execution

begins for our run() methods in case of Runnable interface.

Special Methods of Threads

Now let us discuss various methods that are there for threads. Here we will be discussing

major methods in order to have a practical understanding of threads and multithreading

which are sequential as follows:

1. start() Method

2. suspend() Method

3. stop() Method

4. wait() Method

5. notify() Method

6. notifyAll() Method

7. sleep() Method

 Output Without sleep() Method

 Output with sleep() method in Serial Execution Processes (Blocking methods

approach)

 Output with sleep() method in Parallel Execution Processes (Unblocking methods

approach)

8. join() Method

Priorities in Threads

Priorities in threads is a concept where each thread is having a priority which is

represented by numbers ranging from 1 to 10.

 The default priority is set to 5 as excepted.

 Minimum priority is set to 1.

https://www.geeksforgeeks.org/start-function-multithreading-java/
https://www.geeksforgeeks.org/how-to-temporarily-stop-a-thread-in-java/
https://www.geeksforgeeks.org/killing-threads-in-java/
https://www.geeksforgeeks.org/differences-between-wait-and-join-methods-in-java/
https://www.geeksforgeeks.org/difference-notify-notifyall-java/
https://www.geeksforgeeks.org/difference-notify-notifyall-java/
https://www.geeksforgeeks.org/thread-sleep-method-in-java-with-examples/
https://www.geeksforgeeks.org/joining-threads-in-java/
https://www.geeksforgeeks.org/java-thread-priority-multithreading/

55

 Maximum priority is set to 10.

Here 3 constants are defined in it namely as follows:

1. public static int NORM_PRIORITY

2. public static int MIN_PRIORITY

3. public static int MAX_PRIORITY

Let us discuss it with an example to get how internally the work is getting executed. Here we

will be using the knowledge gathered above as follows:

 We will use currentThread() method to get the name of the current thread. User can also

use setName() method if he/she wants to make names of thread as per choice for

understanding purposes.

 getName() method will be used to get the name of the thread.

 If we look carefully we do see the outputs for cases 1 and 2 are equivalent. This signifies

that when the user is not even aware of the priority threads still NORM_PRIORITY is

showcasing the same result as to what default priority is. It is because the default priority of

running thread as soon as the corresponding start() method is called is executed as per

setting priorities for all the thread to 5 which is equivalent to the priority of NORM case.

This is because both the outputs are equivalent to each other. While in case 3 priority is set

to a minimum on a scale of 1 to 10 so do the same in case 4 where priority is assigned to 10

on the same scale. Hence, all the outputs in terms of priorities are justified. Now let us move

ahead onto an important aspect of priority threading been incorporated in daily life –

Daemon thread

Daemon thread is basically a service provider thread that provides services to the user

thread. The scope for this thread start() or be it terminate() is completely dependent on the

user‟s thread as it supports in the backend for user threads being getting run. As soon as the

user thread is terminated daemon thread is also terminated at the same time as being the

service provider thread.

Hence, the characteristics of the Daemon thread are as follows:

 It is only the service provider thread not responsible for interpretation in user threads.

https://www.geeksforgeeks.org/naming-thread-fetching-name-current-thread-java/
https://www.geeksforgeeks.org/naming-thread-fetching-name-current-thread-java/
https://www.geeksforgeeks.org/method-class-getname-method-in-java/
https://www.geeksforgeeks.org/daemon-thread-java/

56

 So, it is a low-priority thread.

 It is a dependent thread as it has no existence on its own.

 JVM terminates the thread as soon as user threads are terminated and come back into

play as the user‟s thread starts.

 Yes, you guess the most popular example is garbage collector in java. Some other

examples do include „finalizer‟.

Exceptions: IllegalArgumentException as return type while setting a Daemon thread is

boolean so do apply carefully.

Note: To get rid of the exception users thread should only start after setting it to daemon

thread. The other way of starting prior setting it to daemon will not work as it will pop-out

IllegalArgumentException

As discussed above in the Thread class two most widely used method is as follows:

Let us discuss the implementation of the Daemon thread before jumping onto the garbage

collector.

// Java Program to show Working of Daemon Thread

// with users threads

import java.io.*;

// Importing Thread class from java.util package

import java.util.*;

// Class 1

// Helper Class extending Thread class

class CheckingMyDaemonThread extends Thread {

 // Method

 // run() method which is invoked as soon as

 // thread start via start()

https://www.geeksforgeeks.org/how-to-solve-illegalargumentexception-in-java/

57

 public void run()

 {

 // Checking whether the thread is daemon thread or

 // not

 if (Thread.currentThread().isDaemon()) {

 // Print statement when Daemon thread is called

 System.out.println(

 "I am daemon thread and I am working");

 }

 else {

 // Print statement whenever users thread is

 // called

 System.out.println(

 "I am user thread and I am working");

 }

 }

}

// Class 2

// Main Class

class GFG {

 // Main driver method

 public static void main(String[] args)

58

 {

 // Creating threads in the main body

 CheckingMyDaemonThread t1

 = new CheckingMyDaemonThread();

 CheckingMyDaemonThread t2

 = new CheckingMyDaemonThread();

 CheckingMyDaemonThread t3

 = new CheckingMyDaemonThread();

 // Setting thread named 't2' as our Daemon thread

 t2.setDaemon(true);

 // Starting all 3 threads using start() method

 t1.start();

 t2.start();

 t3.start();

 // Now start() will automatically

 // invoke run() method

 }

}

Another way to achieve the same is through Thread Group in which as the name suggests

multiple threads are treated as a single object and later on all the operations are carried on

over this object itself aiding in providing a substitute for the Thread Pool.

59

Note:

While implementing ThreadGroup do note that ThreadGroup is a part of

„java.lang.ThreadGroup’ class not a part of Thread class in java so do peek out

constructors and methods of ThreadGroup class before moving ahead keeping a check over

deprecated methods in his class so as not to face any ambiguity further.

Here main() method in itself is a thread because of which you do see Exception in main()

while running the program because of which system.main thread exception is thrown

sometimes while execution of the program.

Synchronization

It is the mechanism that bounds the access of multiple threads to share a common resource

hence is suggested to be useful where only one thread at a time is granted the access to run

over.

 It is implemented in the program by using „synchronized„ keyword.

 Now let‟s finally discuss some advantages and disadvantages of synchronization before

implementing the same. For more depth in synchronization, one can also learn object level

lock and class level lock and do notice the differences between two to get a fair

understanding of the same before implementing the same.

Why synchronization is required?

 Data inconsistency issues are the primary issue where multiple threads are accessing the

common memory which sometimes results in faults in order to avoid that a thread is

overlooked by another thread if it fails out.

1. Data integrity

2. To work with a common shared resource which is very essential in the real world such as

in banking systems.

https://www.geeksforgeeks.org/synchronized-in-java/
https://www.geeksforgeeks.org/object-level-lock-in-java/
https://www.geeksforgeeks.org/object-level-lock-in-java/
https://www.geeksforgeeks.org/class-level-lock-in-java/
https://www.geeksforgeeks.org/object-level-lock-vs-class-level-lock-in-java/?ref=rp

60

Note: Do not go for synchronized keyword unless it is most needed, remember this as there

is no priority setup for threads, so if the main thread runs before or after other thread the

output of the program would be different.

 The biggest advantage of synchronization is the increase in idiotic resistance as one can not

choose arbitrarily an object to lock on as a result string literal can not be locked or be the

content. Hence, these bad practices are not possible to perform on synchronized method

block.

 As we have seen humongous advantages and get to know how important it is but there

comes disadvantage with it.

Disadvantage: Performance issues will arise as during the execution of one thread all the

other threads are put to a blocking state and do note they are not in waiting state. This causes

a performance drop if the time taken for one thread is too long.

 As perceived from the image in which we are getting that count variable being shared

resource is updating randomly. It is because of multithreading for which this concept

becomes a necessity.

 Case 1: If „main thread‟ executes first then count will be incremented followed by a

„thread T‟ in synchronization

 Case 2: If „thread T„ executes first then count will not increment followed by „main

thread„ in synchronization

 Implementation: Let us take a sample program to observe this 0 1 count conflict

 Example:

 // Java Program to illustrate Output Conflict between

// Execution of Main thread vs Thread created

// count = 1 if main thread executes first

// count = 1 if created thread executes first

https://www.geeksforgeeks.org/thread-states-in-operating-systems/
https://www.geeksforgeeks.org/thread-states-in-operating-systems/

61

// Importing basic required libraries

import java.io.*;

import java.util.*;

// Class 1

// Helper Class extending Thread class

class MyThread extends Thread {

 // Declaring and initializing initial count to zero

 int count = 0;

 // Method 1

 // To increment the count above by unity

 void increment() { count++; }

 // Method 2

 // run method for thread invoked after

 // created thread has started

 public void run()

 {

 // Call method in this method

 increment();

 // Print and display the count

 System.out.println("Count : " + count);

 }

62

}

// Class 2

public class GFG {

 // Main driver method

 public static void main(String[] args)

 {

 // Creating the above our Thread class object

 // in the main() method

 MyThread t1 = new MyThread();

 // start() method to start execution of created

 // thread that will look for run() method

 t1.start();

 }

}

Output Explanation:

Here the count is incremented to 1 meaning „main thread„ has executed prior to „created

thread„. We have run it many times and compiled and run once again wherein all cases here

main thread is executing faster than created thread but do remember output may vary. Our

created thread can execute prior to „main thread„ leading to „Count : 0‟ as an output on the

console.

Now another topic that arises in dealing with synchronization in threads is Thread safety in

java synchronization is the new concept that arises out in synchronization so let us discuss it

considering

https://www.geeksforgeeks.org/thread-safety-and-how-to-achieve-it-in-java/
https://www.geeksforgeeks.org/thread-safety-and-how-to-achieve-it-in-java/

63

 A real-life scenario followed by

 Pictorial representation as an illustration followed by

 Technically description and implementation

Real-life Scenario

Suppose a person is withdrawing some amount of money from the bank and at the same time

the ATM card registered with the same account number is carrying on withdrawal operation

by some other user. Now suppose if withdrawing some amount of money from net banking

makes funds in account lesser than the amount which needed to be withdrawal or the other

way. This makes the bank unsafe as more funds are debited from the account than was

actually present in the account making the bank very unsafe and is not seen in daily life. So

what banks do is that they only let one transaction at a time. Once it is over then another is

permitted.

Illustration:

Interpreting the same technology as there are two different processes going on which

object in case of parallel execution is over headed by threads. Now possessing such traits

over threads such that they should look after for before execution or in simpler words

making them synchronized. This mechanism is referred to as Thread Safe with the use of the

keyword „synchronized„ before the common shared method/function to be performed

parallel.

Technical Description:

As we know Java has a feature, Multithreading, which is a process of running multiple

threads simultaneously. When multiple threads are working on the same data, and the value

of our data is changing, that scenario is not thread-safe, and we will get inconsistent results.

When a thread is already working on an object and preventing another thread from working

on the same object, this process is called Thread-Safety. Now there are several ways to

achieve thread-safety in our program namely as follows:

1. Using Synchronization

2. Using Volatile Keyword

https://www.geeksforgeeks.org/multithreading-in-java/
https://www.geeksforgeeks.org/synchronized-in-java/
https://www.geeksforgeeks.org/volatile-keyword-in-java/

64

3. Using Atomic Variable

4. Using Final Keyword

Conclusion: Hence, if we are accessing one thread at a time then we can say thread-safe

program and if multiple threads are getting accessed then the program is said to be thread-

unsafe that is one resource at a time can not be shared by multiple threads at a time.

Implementation:

 Java Program to illustrate Incomplete Thread Iterations returning counter value to Zero

irrespective of iteration bound

 Java Program to Illustrate Complete Thread Iterations illustrating join() Method

 Java Program to Illustrate thread-unsafe or non-synchronizing programs as of incomplete

iterations

 Java Program to Illustrate Thread Safe And synchronized Programs as of Complete

iterations using „synchronized„ Keyword.

https://www.geeksforgeeks.org/atomic-variables-in-java-with-examples/
https://www.geeksforgeeks.org/final-keyword-java/

65

ONE MARK QUESTION AND ANSWER

1. The insulation of the data from direct access by the program is called _____________.

 Ans: Data hiding

2. The linking of a Procedure call to the code at runtime is called ________________.

 Ans: Dynamic Binding.

3. Define Polymorphism.

 Ans: The ability to take more than one form.

4. The old name of Java was ____________ .

 Ans: Oak.

5. For interpretation of java program , _____________ command is used.

 Ans: java.

6. _____________ command is used to compile a java program.

 Ans: javac.

7. What do you mean by javap?

 [A] java Compiler [B] java Interpreter

 [C] java Disassembler [D] java Debugger

 Ans: [C] java Disassembler

8. Java intermediate code is known as ______________.

 Ans: Byte code.

9. Hot java is _______________.

 Ans: Web browser.

66

10. What is the full form of JVM?

 Ans: Java Virtual Machine.

11. Java contains Struct and Union datatypes (T/F).

 Ans: False.

12. What is the Expansion of JSL ?

 Ans: Java Standard Library.

13. JDK stands for __________________.

 Ans: Java Development Kit.

14. __________________ is a software that interprets Java Byte codes.

 [A] Java Virtual Machine [B] Java compiler

 [C] Java Debugger [D] Java API

 Ans: [A] Java Virtual Machine

15. Smallest Individual units in a programs are known as ________________.

 Ans : Tokens.

16. In java ,the data items are called _____________ .

 Ans: Fields.

17. Objects in java are created using _________________ operator.

 Ans: new.

18. Static variables and Static methods are referred to as ___________ and ____________ .

 Ans: Class Variables and Class Methods.

19. ____________ method can be called without using object.

 Ans: Static method.

67

20. The mechanism of deriving a new class from an old one is

called_______________________.

Ans : Inheritance

21. ______________________keyword is used only within a subclass constructor method.

Ans : Super

22. State True or False

 Java run-time is an automatic garbage collecting system.

Ans : True

 23. ___________________ methods are used to destroy the objects created by the

constructor methods.

Ans : finalize()

24. Methods that have same name , but different parameter list and different definition is

known as _________________.

Ans : Method Overloading

25. ______________________method can‟t be overridden.

Ans : final

26. Which of the following feature is not supported by java ?

[A] Multithreading [B] Reflection

[C] Operator Overloading [D] Garbage Collection

Ans: [C] Operator Overloading

27._____________________class cannot be subclassed in java.

Ans : Final class

68

28. Say Yes or No

 Can we declare abstract static method ?

 [A] Yes [B] No

Ans : [B] No

29. If method have same name as class name and method don‟t have any return type, then it

is known as _________________.

Ans : Constructor

30. _________________ method can be defined only once in a program.

Ans : main method

31. _______________are grouping a variety if classes and / or interfaces.

Ans : Packages

32. API stands for _____________________.

Ans : Application Programming Interface.

33. _________________ package support a write network programming.

 [A] java.lang [B] java.net

 [C] java.applet [D] java.util

Ans: [B] java.net

34. State True or False

 When an interface extends two or more interfaces , they are separated by colon.

Ans : False

35.__________________ acts as container for data & methods.

Ans : Class

69

36.__________________ statement is used to access the package.

Ans : import statement

37. State True or False

i) Packages begins with lowercase letters.

 ii)Java does not support package hierarchy.

Ans :i)True ii)False

38. ___________________ keyword is used to refer to member of base class from a sub

class.

Ans:super

39. A tiny program which has a single flow of control is called______________.

Ans:Thread

40. The ability of a language to support multithread is referred to as________________.

Ans:Concurrency

41. A program that contains multiple flows of control is known as___________________.

Ans:Multiplied Program

42 _________________ is an operating system concept in which multiple task are

performed simultaneously.

Ans:Multitasking

43. The process of assigning time to thread is known as __________________.

Ans:Time-slicing

44. What is the name of the method used to start a thread execution?

 [A]init(); [B]start(); [C]run(); [D]resume();

70

Ans:[B]start();

45. ________________ method is the heart and soul of any thead.

Ans:run()

46. An Applet developed locally and stored in a local system is known as

____________________.

Ans:Local applet

47. To run applet__________________command is used.

Ans:Appletviewer

48. State True or False

 (i)Applet do not use the main() method for initiating the execution of the code.

 (ii)Applet can communicate with other serves on the network.

Ans: i)True ii)False

49. The Applet class is contained in _________________package.

 [A] java.applet [B] java.awt

 [C] java.io[D] java.util

Ans: java.applet

50. To display a text on the applet________method is used.

Ans:drawstring()

51. ___________________method is called to display the result of an applet code on the

screen.

Ans:paint()

52. The Graphics class is contained in ___________________package.

71

 [A] java.applet [B] java.awt

 [C]java.io [D]java.util

53. URL stands for ___________________.

Ans:Uniform Resource Locator

54. Applet Progarms can be run by_________________ and _________________.

Ans:Appletviewer,java-enabled web browser

55. StateTrue or False

 Applet‟s getParameter() method can be used to fetch parameter values from HTML file.

Ans:i)True

56.Which package contains color class?

 [A]java.applet

 [B]java.awt

 [C]java.graphics

 [D]java.lang

 Ans:[B]java.awt

57.The event listener corresponding to handling keyboard events is the

Ans:KeyListener

58.______________method can be used to draw a rounded rectangle in a applet.

Ans:drawRoundRect()

59. ____________method can be used to draw a ellipse in a applet?

Ans:drawOval()

72

60.What is the syntax of paint() method?

Ans:public void paint(Graphics g)

61.What is a file?

Ans:A file is a collection of related records placed in a particular area on the disk.

62.Storing and managing data in a file is known as ________________

Ans: File Processing

63.The process of reding and writing objects in a file is called as __________________

 Ans: Object Serialization

64.What are the basic types of java Streams?

Ans:InputStream,OutputStream

65.The_____________ package contains a large number of stream classes for provide

capabilities for processing all types of data.

a) java.io b)java.awt c)java.applet d)java.lang

Ans:a)java.io

66.What are the two kinds of character stream classes.

 Ans:Reader Stream Classes and Writer Stream Classes

67.The Method flush() belongs to _________________ classes.

 a)Input Stream b)Output Stream

 c)DataInputStream d)DataOutputStream

Ans: b)Output Stream

68.The Methods skip(n),available() belongs to ______________ stream class.

 a)input b)Output c)DataInput d)DataOutput

73

 Ans:a)Input

69.The class DataInputStream extends FilterInputStream and implements the interface

DataInput(T/F)

 Ans:TRUE

70.The______________ class is an abstract class which acts as a base class for all the other

writer stream classes.

 a)Writer b)Buffered Writer c)Filter Writer d)Print Writer

 Ans: a) Writer

71.FileOutputStream class is used for reading bytes from a file. (T/F)

 Ans: FALSE

72.What are the Two ways of initializing the file stream objects?

 Ans:Direct and Indirect

73. The function “ Singnals that an I/O exception of some sort has occurred “ related to

which of the following exception.

 [A] EOF Exception [B] FileNotFoundException

 [C] Interrupted Exception [D] IO Exception

 Ans: [D] IO Exception

74. What are the two commonly used classes for handling bytes?

 Ans: FileInputStream and FileOutputStream.

75. In a Random Access File an existing file can be updated using ____________ mode.

 [A] r [B] rw

 [C] w [D] None of the above . Ans: [B] rw

