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DIGITAL IMAGE FUNDAMENTALS & IMAGE TRANSFORMS 

 

DIGITAL IMAGE FUNDAMENTALS: 

The field of digital image processing refers to processing digital images by means of 

digital computer. Digital image is composed of a finite number of elements, each of which 

has a particular location and value. These elements are called picture elements, image 

elements, pels and pixels.   Pixel is the term used most widely to denote the elements of 

digital image. 

An image is a two-dimensional function that represents a measure of some 

characteristic such as brightness or color of a viewed scene. An image is a projection of a 3- 

D scene into a 2D projection plane. 

An image may be defined as a two-dimensional function f(x,y), where x and y are 

spatial (plane) coordinates, and the amplitude of f at any pair of coordinates (x,y) is called 

the intensity of the image at that point. 

The term gray level is used often to refer to the intensity of monochrome images. 

Color images are formed by a combination of individual 2-D images. 

For example: The RGB color system, a color image consists of three (red, green and 

blue) individual component images. For this reason many of the techniques developed for 

monochrome images can be extended to color images by processing the three component 

images individually. 

An image may be continuous with respect to the x- and y- coordinates and also in 

amplitude. Converting such an image to digital form requires that the coordinates, as well as 

the amplitude, be digitized. 

APPLICATIONS OF DIGITAL IMAGE PROCESSING 

Since digital image processing has very wide applications and almost all of the technical 

fields are impacted by DIP, we will just discuss some of the major applications of DIP. 



 

2  

 

Digital image processing has a broad spectrum of applications, such as 

 Remote sensing via satellites and other spacecrafts 

 Image transmission and storage for business applications 

 Medical processing, 

 RADAR (Radio Detection and Ranging) 

 SONAR(Sound Navigation and Ranging) and 

 Acoustic image processing (The study of underwater sound is known as underwater 

acoustics or hydro acoustics.) 

 Robotics and automated inspection of industrial parts. 

Images acquired by satellites are useful in tracking of 

 Earth resources; 

 Geographical mapping; 

 Prediction of agricultural crops, 

 Urban growth and weather monitoring 

 Flood and fire control and many other environmental applications. 

Space image applications include: 

 Recognition and analysis of objects contained in images obtained from deep 

space-probe missions. 

 Image transmission and storage applications occur in broadcast television 

 Teleconferencing 

 Transmission of facsimile images(Printed documents and graphics) for office 

automation 

Communication over computer networks 

 Closed-circuit television based security monitoring systems and 

 In military communications. 

Medical applications: 

 Processing of chest X- rays 

 Cineangiograms 

 Projection images of transaxial tomography and 

 Medical images that occur in radiology nuclear magnetic resonance(NMR) 

 Ultrasonic scanning 

IMAGE PROCESSING TOOLBOX (IPT) is a collection of functions that extend the 

capability of the MATLAB numeric computing environment. These functions, and the 
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expressiveness of the MATLAB language, make many image-processing operations easy to 

write in a compact, clear manner, thus providing a ideal software prototyping environment 

for the solution of image processing problem. 

Components of Image processing System: 
 

Figure : Components of Image processing System 

Image Sensors: With reference to sensing, two elements are required to acquire digital 

image. The first is a physical device that is sensitive to the energy radiated by the object we 

wish to image and second is specialized image processing hardware. 

Specialize image processing hardware: It consists of the digitizer just mentioned, plus 

hardware that performs other primitive operations such as an arithmetic logic unit, which 

performs arithmetic such addition and subtraction and logical operations in parallel on images. 

Computer: It is a general purpose computer and can range from a PC to a supercomputer 

depending on the application. In dedicated applications, sometimes specially designed 

computer are used to achieve a required level of performance 

Software: It consists of specialized modules that perform specific tasks a well designed 

package also includes capability for the user to write code, as a minimum, utilizes the 

specialized module. More sophisticated software packages allow the integration of these 

modules. 
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Mass storage: This capability is a must in image processing applications. An image of size 

1024 x1024 pixels, in which the intensity of each pixel is an 8- bit quantity requires one 

Megabytes of storage space if the image is not compressed .Image processing applications 

falls into three principal categories of storage 

i) Short term storage for use during processing 

ii) On line storage for relatively fast retrieval 

iii) Archival storage such as magnetic tapes and disks 

Image display: Image displays in use today are mainly color TV monitors. These monitors 

are driven by the outputs of image and graphics displays cards that are an integral part of 

computer system. 

Hardcopy devices: The devices for recording image includes laser printers, film cameras, 

heat sensitive devices inkjet units and digital units such as optical and CD ROM disk. Films 

provide the highest possible resolution, but paper is the obvious medium of choice for written 

applications. 

Networking: It is almost a default function in any computer system in use today because of 

the large amount of data inherent in image processing applications. The key consideration in 

image transmission bandwidth. 

Fundamental Steps in Digital Image Processing: 

There are two categories of the steps involved in the image processing – 

1. Methods whose outputs are input are images. 

2. Methods whose outputs are attributes extracted from those images. 
 

Fig: Fundamental Steps in Digital Image Processing 
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Image acquisition: It could be as simple as being given an image that is already in digital 

form. Generally the image acquisition stage involves processing such scaling. 

Image Enhancement: It is among the simplest and most appealing areas of digital image 

processing. The idea behind this is to bring out details that are obscured or simply to 

highlight certain features of interest in image. Image enhancement is a very subjective area of 

image processing. 

 

Image Restoration: It deals with improving the appearance of an image. It is an objective 

approach, in the sense that restoration techniques tend to be based on mathematical or 

probabilistic models of image processing. Enhancement, on the other hand is based on human 

subjective preferences regarding what constitutes a “good” enhancement result. 

 

Color image processing: It is an area that is been gaining importance because of the use of 

digital images over the internet. Color image processing deals with basically color models 

and their implementation in image processing applications. 

Wavelets and Multiresolution Processing: These are the foundation for representing image 

in various degrees of resolution. 

Compression: It deals with techniques reducing the storage required to save an image, or the 

bandwidth required to transmit it over the network. It has to major approaches a) Lossless 

Compression b) Lossy Compression 

Morphological processing: It deals with tools for extracting image components that are 

useful in the representation and description of shape and boundary of objects. It is majorly 

used in automated inspection applications. 
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Representation and Description: It always follows the output of segmentation step that is, 

raw pixel data, constituting either the boundary of an image or points in the region itself. In 

either case converting the data to a form suitable for computer processing is necessary. 

Recognition: It is the process that assigns label to an object based on its descriptors. It is the 

last step of image processing which use artificial intelligence of software. 

Knowledge base: 

Knowledge about a problem domain is coded into an image processing system in the form of 

a knowledge base. This knowledge may be as simple as detailing regions of an image where 

the information of the interest in known to be located. Thus limiting search that has to be 

conducted in seeking the information. The knowledge base also can be quite complex such 

interrelated list of all major possible defects in a materials inspection problems or an image 

database containing high resolution satellite images of a region in connection with change 

detection application. 

A Simple Image Model: 

An image is denoted by a two dimensional function of the form f{x, y}. The value or 

amplitude of f at spatial coordinates {x,y} is a positive scalar quantity whose physical 

meaning is determined by the source of the image. When an image is generated by a physical 

process, its values are proportional to energy radiated by a physical source. As a 

consequence, f(x,y) must be nonzero and finite; that is o<f(x,y) <co The function f(x,y) may 

be characterized by two components- The amount of the source illumination incident on the 

scene being viewed. 

(a) The amount of the source illumination reflected back by the objects in the scene 

These are called illumination and reflectance components and are denoted by i(x,y) an r (x,y) 

respectively. 

The functions combine as a product to form f(x,y). We call the intensity of a monochrome 

image at any coordinates (x,y) the gray level (l) of the image at that point l= f (x, y.) 

L min ≤ l ≤ Lmax 

Lmin is to be positive and Lmax must be finite 

Lmin = imin rmin 

Lmax = imax rmax 

The interval [Lmin, Lmax] is called gray scale. Common practice is to shift this interval 

numerically to the interval [0, L-l] where l=0 is considered black and l= L-1 is considered 
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white on the gray scale. All intermediate values are shades of gray of gray varying from 

black to white. 

SAMPLING AND QUANTIZATION: 

To create a digital image, we need to convert the continuous sensed data into digital from. 

This involves two processes – sampling and quantization. An image may be continuous with 

respect to the x and y coordinates and also in amplitude. To convert it into digital form we 

have to sample the function in both coordinates and in amplitudes. 

Digitalizing the coordinate values is called sampling. Digitalizing the amplitude values is 

called quantization. There is a continuous the image along the line segment AB. To simple 

this function, we take equally spaced samples along line AB. The location of each samples is 

given by a vertical tick back (mark) in the bottom part. The samples are shown as block 

squares superimposed on function the set of these discrete locations gives the sampled 

function. 

In order to form a digital, the gray level values must also be converted (quantized) into 

discrete quantities. So we divide the gray level scale into eight discrete levels ranging from 

eight level values. The continuous gray levels are quantized simply by assigning one of the 

eight discrete gray levels to each sample. The assignment it made depending on the vertical 

proximity of a simple to a vertical tick mark. 

Starting at the top of the image and covering out this procedure line by line produces a two 

dimensional digital image. 

Digital Image definition: 

A digital image f(m,n) described in a 2D discrete space is derived from an analog 

image f(x,y) in a 2D continuous space through a sampling process that is frequently referred 

to as digitization. The mathematics of that sampling process will be described in subsequent 

Chapters. For now we will look at some basic definitions associated with the digital image. 

The effect of digitization is shown in figure. 

The 2D continuous image f(x,y) is divided into N rows and M columns. The 

intersection of a row and a column is termed a pixel. The value assigned to the integer 

coordinates (m,n) with m=0,1,2..N-1 and n=0,1,2…N-1 is f(m,n). In fact, in most cases, is 

actually a function of many variables including depth, color and time (t). 
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There are three types of computerized processes in the processing of image 

1) Low level process -these involve primitive operations such as image processing to reduce 

noise, contrast enhancement and image sharpening. These kind of processes are characterized 

by fact the both inputs and output are images. 

2) Mid level image processing - it involves tasks like segmentation, description of those 

objects to reduce them to a form suitable for computer processing, and classification of 

individual objects. The inputs to the process are generally images but outputs are attributes 

extracted from images. 

3) High level processing – It involves “making sense” of an ensemble of recognized objects, 

as in image analysis, and performing the cognitive functions normally associated with vision. 

Representing Digital Images: 

The result of sampling and quantization is matrix of real numbers. Assume that an 

image f(x,y) is sampled so that the resulting digital image has M rows and N Columns. The 

values of the coordinates (x,y) now become discrete quantities thus the value of the 

coordinates at orgin become 9X,y) =(o,o) The next Coordinates value along the first signify 

the iamge along the first row. it does not mean that these are the actual values of physical 

coordinates when the image was sampled. 

Thus the right side of the matrix represents a digital element, pixel or pel. The matrix can be 

represented in the following form as well. The sampling process may be viewed as 

partitioning the xy plane into a grid with the coordinates of the center of each grid being a 

pair of elements from the Cartesian products Z2 which is the set of all ordered pair of 

elements (Zi, Zj) with Zi and Zj being integers from Z. Hence f(x,y) is a digital image if gray 
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level (that is, a real number from the set of real number R) to each distinct pair of coordinates 

(x,y). This functional assignment is the quantization process. If the gray levels are also 

integers, Z replaces R, the and a digital image become a 2D function whose coordinates and 

she amplitude value are integers. Due to processing storage and hardware consideration, the 

number gray levels typically is an integer power of 2. 

L=2
k

 

Then, the number, b, of bites required to store a digital image is B=M *N* k When M=N, the 

equation become b=N
2
*k 

When an image can have 2k gray levels, it is referred to as “k- bit”. An image with 256 

possible gray levels is called an “8- bit image” (256=2
8
). 

Spatial and Gray level resolution: 

Spatial resolution is the smallest discernible details are an image. Suppose a chart can be 

constructed with vertical lines of width w with the space between the also having width W, 

so a line pair consists of one such line and its adjacent space thus. The width of the line pair 

is 2w and there is 1/2w line pair per unit distance resolution is simply the smallest number of 

discernible line pair unit distance. 

Gray levels resolution refers to smallest discernible change in gray levels. Measuring 

discernible change in gray levels is a highly subjective process reducing the number of bits R 

while repairing the spatial resolution constant creates the problem of false contouring. 

It is caused by the use of an insufficient number of gray levels on the smooth areas of 

the digital image . It is called so because the rides resemble top graphics contours in a map. It 

is generally quite visible in image displayed using 16 or less uniformly spaced gray levels. 

Image sensing and Acquisition: 

The types of images in which we are interested are generated by the combination of an 

“illumination” source and the reflection or absorption of energy from that source by the 

elements of the “scene” being imaged. We enclose illumination and scene in quotes to 

emphasize the fact that they are considerably more general than the familiar situation in 

which a visible light source illuminates a common everyday 3-D (three-dimensional) scene. 

For example, the illumination may originate from a source of electromagnetic energy such as 

radar, infrared, or X-ray energy. But, as noted earlier, it could originate from less traditional 

sources, such as ultrasound or even a computer-generated illumination pattern. Similarly, the 

scene elements could be familiar objects, but they can just as easily be molecules, buried 

rock formations, or a human brain. We could even image a source, such as acquiring images 
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of the sun. Depending on the nature of the source, illumination energy is reflected from, or 

transmitted through, objects. An example in the first category is light reflected from a planar 

surface. An example in the second category is when X-rays pass through a patient‟s body for 

the purpose of generating a diagnostic X-ray film. In some applications, the reflected or 

transmitted energy is focused onto a photo converter (e.g., a phosphor screen), which 

converts the energy into visible light. Electron microscopy and some applications of gamma 

imaging use this approach. The idea is simple: Incoming energy is transformed into a voltage 

by the combination of input electrical power and sensor material that is responsive to the 

particular type of energy being detected. The output voltage waveform is the response of the 

sensor(s), and a digital quantity is obtained from each sensor by digitizing its response. In 

this section, we look at the principal modalities for image sensing and generation. 

Fig:Single Image sensor 

 

Fig: Line Sensor 

Fig: Array sensor 

Image Acquisition using a Single sensor: 

The components of a single sensor. Perhaps the most familiar sensor of this type is 

the photodiode, which is constructed of silicon materials and whose output voltage waveform 

is proportional to light. The use of a filter in front of a sensor improves selectivity. For 
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example, a green (pass) filter in front of a light sensor favors light in the green band of the 

color spectrum. As a consequence, the sensor output will be stronger for green light than for 

other components in the visible spectrum. 

 

In order to generate a 2-D image using a single sensor, there has to be relative displacements 

in both the x- and y-directions between the sensor and the area to be imaged. Figure shows an 

arrangement used in high-precision scanning, where a film negative is mounted onto a drum 

whose mechanical rotation provides displacement in one dimension. The single sensor is 

mounted on a lead screw that provides motion in the perpendicular direction. Since 

mechanical motion can be controlled with high precision, this method is an inexpensive (but 

slow) way to obtain high-resolution images. Other similar mechanical arrangements use a flat 

bed, with the sensor moving in two linear directions. These types of mechanical digitizers 

sometimes are referred to as microdensitometers. 

Image Acquisition using a Sensor strips: 

A geometry that is used much more frequently than single sensors consists of an in-line 

arrangement of sensors in the form of a sensor strip, shows. The strip provides imaging 

elements in one direction. Motion perpendicular to the strip provides imaging in the other 

direction. This is the type of arrangement used in most flat bed scanners. Sensing devices 

with 4000 or more in-line sensors are possible. In-line sensors are used routinely in airborne 

imaging applications, in which the imaging system is mounted on an aircraft that flies at a 

constant altitude and speed over the geographical area to be imaged. One dimensional 

imaging sensor strips that respond to various bands of the electromagnetic spectrum are 

mounted perpendicular to the direction of flight. The imaging strip gives one line of an image 

at a time, and the motion of the strip completes the other dimension of a two-dimensional 

image. Lenses or other focusing schemes are used to project area to be scanned onto the 

sensors. Sensor strips mounted in a ring configuration are used in medical and industrial 

imaging to obtain cross-sectional (“slice”) images of 3-D objects. 
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Fig: Image Acquisition using linear strip and circular strips. 

Image Acquisition using a Sensor Arrays: 

The individual sensors arranged in the form of a 2-D array. Numerous electromagnetic and 

some ultrasonic sensing devices frequently are arranged in an array format. This is also the 

predominant arrangement found in digital cameras. A typical sensor for these cameras is a 

CCD array, which can be manufactured with a broad range of sensing properties and can be 

packaged in rugged arrays of elements or more. CCD sensors are used widely in digital 

cameras and other light sensing instruments. The response of each sensor is proportional to 

the integral of the light energy projected onto the surface of the sensor, a property that is used 

in astronomical and other applications requiring low noise images. Noise reduction is 

achieved by letting the sensor integrate the input light signal over minutes or even hours. The 

two dimensional, its key advantage is that a complete image can be obtained by focusing the 

energy pattern onto the surface of the array. Motion obviously is not necessary, as is the case 

with the sensor arrangements This figure shows the energy from an illumination source being 

reflected from a scene element, but, as mentioned at the beginning of this section, the energy 

also could be transmitted through the scene elements. The first function performed by the 

imaging system is to collect the incoming energy and focus it onto an image plane. If the 

illumination is light, the front end of the imaging system is a lens, which projects the viewed 

scene onto the lens focal plane. The sensor array, which is coincident with the focal plane, 

produces outputs proportional to the integral of the light received at each sensor. Digital and 
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analog circuitry sweep these outputs and convert them to a video signal, which is then 

digitized by another section of the imaging system. 

Image sampling and Quantization: 

To create a digital image, we need to convert the continuous sensed data into digital form. 

This involves two processes: sampling and quantization. A continuous image, f(x, y), that we 

want to convert to digital form. An image may be continuous with respect to the x- and y- 

coordinates, and also in amplitude. To convert it to digital form, we have to sample the 

function in both coordinates and in amplitude. Digitizing the coordinate values is called 

sampling. Digitizing the amplitude values is called quantization. 
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Digital Image representation: 

Digital image is a finite collection of discrete samples (pixels) of any observable object. The 

pixels represent a two- or higher dimensional “view” of the object, each pixel having its own 

discrete value in a finite range. The pixel values may represent the amount of visible light, 

infra red light, absortation of x-rays, electrons, or any other measurable value such as 

ultrasound wave impulses. The image does not need to have any visual sense; it is sufficient 

that the samples form a two-dimensional spatial structure that may be illustrated as an image. 

The images may be obtained by a digital camera, scanner, electron microscope, ultrasound 

stethoscope, or any other optical or non-optical sensor. Examples of digital image are: 

 digital photographs 

 satellite images 

 radiological images (x-rays, mammograms) 

 binary images, fax images, engineering drawings 

Computer graphics, CAD drawings, and vector graphics in general are not considered in this 

course even though their reproduction is a possible source of an image. In fact, one goal of 

intermediate level image processing may be to reconstruct a model (e.g. vector 

representation) for a given digital image. 

RELATIONSHIP BETWEEN PIXELS: 

We consider several important relationships between pixels in a digital image. 

NEIGHBORS OF A PIXEL 

• A pixel p at coordinates (x,y) has four horizontal and vertical neighbors whose 

coordinates are given by: 

(x+1,y), (x-1, y), (x, y+1), (x,y-1) 
 

This set of pixels, called the 4-neighbors or p, is denoted by N4(p). Each pixel is one 

unit distance from (x,y) and some of the neighbors of p lie outside the digital image if (x,y) is 

on the border of the image. The four diagonal neighbors of p have coordinates and are 

denoted by ND (p). 

(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1) 
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These points, together with the 4-neighbors, are called the 8-neighbors of p, denoted 

by N8 (p). 

As before, some of the points in ND (p) and N8 (p) fall outside the image if (x,y) is on 

the border of the image. 

ADJACENCY AND CONNECTIVITY 

Let v be the set of gray –level values used to define adjacency, in a binary image, v={1}. 

In a gray-scale image, the idea is the same, but V typically contains more elements, for 

example, V = {180, 181, 182, …, 200}. 

If the possible intensity values 0 – 255, V set can be any subset of these 256 values. 

if we are reference to adjacency of pixel with value. 

Three types of adjacency 

 4- Adjacency – two pixel P and Q with value from V are 4 –adjacency if A is in the 

set N4(P) 

 8- Adjacency – two pixel P and Q with value from V are 8 –adjacency if A is in the 

set N8(P) 

 M-adjacency –two pixel P and Q with value from V are m – adjacency if (i) Q is in 

N4(p) or (ii) Q is in ND(q) and the set N4(p) ∩ N4(q) has no pixel whose values are 

from V. 

• Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the 

ambiguities that often arise when 8-adjacency is used. 

• For example: 
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Fig:1.8(a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the 

center pixel; (c) m-adjacency. 

Types of Adjacency: 

• In this example, we can note that to connect between two pixels (finding a path 

between two pixels): 

– In 8-adjacency way, you can find multiple paths between two pixels 

– While, in m-adjacency, you can find only one path between two pixels 

• So, m-adjacency has eliminated the multiple path connection that has been generated 

by the 8-adjacency. 

• Two subsets S1 and S2 are adjacent, if some pixel in S1 is adjacent to some pixel in S2. 

Adjacent means, either 4-, 8- or m-adjacency. 

A Digital Path: 

• A digital path (or curve) from pixel p with coordinate (x,y) to pixel q with coordinate (s,t) 

is a sequence of distinct pixels with coordinates (x0,y0), (x1,y1), …, (xn, yn) where (x0,y0) = 

(x,y) and (xn, yn) = (s,t) and pixels (xi, yi) and (xi-1, yi-1) are adjacent for 1 ≤ i ≤ n 

• n is the length of the path 

• If (x0,y0) = (xn, yn), the path is closed. 

We can specify 4-, 8- or m-paths depending on the type of adjacency specified. 

• Return to the previous example: 
 

Fig:1.8 (a) Arrangement of pixels; (b) pixels that are 8-adjacent(shown dashed) to the 

center pixel; (c) m-adjacency. 

In figure (b) the paths between the top right and bottom right pixels are 8-paths. And 

the path between the same 2 pixels in figure (c) is m-path 

Connectivity: 

• Let S represent a subset of pixels in an image, two pixels p and q are said to be 

connected in S if there exists a path between them consisting entirely of pixels in S. 
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• For any pixel p in S, the set of pixels that are connected to it in S is called a connected 

component of S. If it only has one connected component, then set S is called a 

connected set. 

Region and Boundary: 

• REGION: Let R be a subset of pixels in an image, we call R a region of the image if R 

is a connected set. 

• BOUNDARY: The boundary (also called border or contour) of a region R is 

the set of pixels in the region that have one or more neighbors that are not in R. 

If R happens to be an entire image, then its boundary is defined as the set of pixels in the first 

and last rows and columns in the image. This extra definition is required because an image 

has no neighbors beyond its borders. Normally, when we refer to a region, we are referring to 

subset of an image, and any pixels in the boundary of the region that happen to coincide with 

the border of the image are included implicitly as part of the region boundary. 

DISTANCE MEASURES: 

For pixel p,q and z with coordinate (x.y) ,(s,t) and (v,w) respectively D is a distance function 

or metric if 

D [p.q] ≥ O {D[p.q] = O iff p=q} 

D [p.q] = D [p.q] and 

D [p.q] ≥ O {D[p.q]+D(q,z) 

• The Euclidean Distance between p and q is defined as: 

 
 

De (p,q) = [(x – s)
2
 + (y - t)

2
]
1/2

 

 
Pixels having a distance less than or equal to some value r from (x,y) are the points 

contained in a disk of radius „ r „centered at (x,y) 

 

• The D4 distance (also called city-block distance) between p and q is defined as: 

D4 (p,q) = | x – s | + | y – t | 
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Pixels having a D4 distance from (x,y), less than or equal to some value r form a 

Diamond centered at (x,y) 

 

 

Example: 

The pixels with distance D4 ≤ 2 from (x,y) form the following contours of 

constant distance. 

The pixels with D4 = 1 are the 4-neighbors of (x,y) 

 

• The D8 distance (also called chessboard distance) between p and q is defined as: 

D8 (p,q) = max(| x – s |,| y – t |) 

Pixels having a D8 distance from (x,y), less than or equal to some value r form a 

square Centered at (x,y). 

 

Example: 

D8 distance ≤ 2 from (x,y) form the following contours of constant distance. 
 

• Dm distance: 

It is defined as the shortest m-path between the points. 
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In this case, the distance between two pixels will depend on the values of the 

pixels along the path, as well as the values of their neighbors. 

• Example: 

Consider the following arrangement of pixels and assume that p, p2, and p4 

have value 1 and that p1 and p3 can have can have a value of 0 or 1 Suppose 

that we consider the adjacency of pixels values 1 (i.e. V = {1}) 

Now, to compute the Dm between points p and p4 

Here we have 4 cases: 

Case1: If p1 =0 and p3 = 0 

The length of the shortest m-path 

(the Dm distance) is 2 (p, p2, p4) 

Case2: If p1 =1 and p3 = 0 

now, p1 and p will no longer be adjacent (see m-adjacency definition) 

then, the length of the shortest 

path will be 3 (p, p1, p2, p4) 

Case3: If p1 =0 and p3 = 1 

The same applies here, and the shortest –m-path will be 3 (p, p2, p3, p4) 
 



 

20  

 

Case4: If p1 =1 and p3 = 1 

The length of the shortest m-path will be 4 (p, p1 , p2, p3, p4) 
 

IMAGE TRANSFORMS: 

2-D FFT: 
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WALSH TRANSFORM: 

We define now the 1-D Walsh transform as follows: 
 

The above is equivalent to: 
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The transform kernel values are obtained from: 
 

Therefore, the array formed by the Walsh matrix is a real symmetric 

matrix. It is easily shown that it has orthogonal columns and rows 

1-D Inverse Walsh Transform 

 

 

The above is again equivalent to 
 

The array formed by the inverse Walsh matrix is identical to the one formed by the forward 

Walsh matrix apart from a multiplicative factor N. 

2-D Walsh Transform 

We define now the 2-D Walsh transform as a straightforward extension of the 1-D transform: 

 

 
•The above is equivalent to: 

 

 Inverse Walsh Transform 

We define now the Inverse 2-D Walsh transform. It is identical to the forward 2-D Walsh 

transform 

 

 
•The above is equivalent to: 
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HADAMARD TRANSFORM: 

We define now the 2-D Hadamard transform. It is similar to the 2-D Walsh transform. 
 

 

The above is equivalent to: 
 

We define now the Inverse 2-D Hadamard transform. It is identical to the forward 2-D 

Hadamard transform. 

 

 
The above is equivalent to: 

 

DISCRETE COSINE TRANSFORM (DCT) : 

The discrete cosine transform (DCT) helps separate the image into parts (or spectral sub- 

bands) of differing importance (with respect to the image's visual quality). The DCT is 

similar to the discrete Fourier transform: it transforms a signal or image from the spatial 

domain to the frequency domain. 

The general equation for a 1D (N data items) DCT is defined by the following equation: 

 
 

and the corresponding inverse 1D DCT transform is simple F
-1

(u), i.e.: 

where 

 

The general equation for a 2D (N by M image) DCT is defined by the following equation: 
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and the corresponding inverse 2D DCT transform is simple F
-1

(u,v), i.e.: 

where 

The basic operation of the DCT is as follows: 

 The input image is N by M; 

 f(i,j) is the intensity of the pixel in row i and column j; 

 F(u,v) is the DCT coefficient in row k1 and column k2 of the DCT matrix. 

 For most images, much of the signal energy lies at low frequencies; these appear in 

the upper left corner of the DCT. 

 Compression is achieved since the lower right values represent higher frequencies, 

and are often small - small enough to be neglected with little visible distortion. 

 The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray 

scale level; 

 8 bit pixels have levels from 0 to 255. 

DISCRETE WAVELET TRANSFORM (DWT): 

There are many discrete wavelet transforms they are Coiflet, Daubechies, Haar, 

Symmlet etc. 

Haar Wavelet Transform 

The Haar wavelet is the first known wavelet. The Haar wavelet is also the simplest 

possible wavelet. The Haar Wavelet can also be described as a step function f(x) shown in Eq 

1 

f (x)  

1 




0  x  1/ 2, 

1/ 2  x  1, 

otherwise. 

Each step in the one dimensional Haar wavelet transform calculates a set of wavelet 

coefficients (Hi-D) and a set of averages (Lo-D). If a data set s0, s1,…, sN-1 contains N 

elements, there will be N/2 averages and N/2 coefficient values. The averages are stored in 

the lower half of the N element array and the coefficients are stored in the upper half. 

The Haar equations to calculate an average ( ai ) and a wavelet coefficient ( ci ) from 

the data set are shown below Eq 

0 
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ai   
si   si    1 

 
 

2 
ci   

si   si    1 
 

 

2 

In wavelet terminology the Haar average is calculated by the scaling function. The 

coefficient is calculated by the wavelet function. 

Two-Dimensional Wavelets 

The two-dimensional wavelet transform is separable, which means we can apply a 

one-dimensional wavelet transform to an image. We apply one-dimensional DWT to all rows 

and then one-dimensional DWTs to all columns of the result. This is called the standard 

decomposition and it is illustrated in figure 4.8. 

 

 

Figure The standard decomposition of the two-dimensional DWT. 

We can also apply a wavelet transform differently. Suppose we apply a wavelet 

transform to an image by rows, then by columns, but using our transform at one scale only. 

This technique will produce a result in four quarters: the top left will be a half-sized version 

of the image and the other quarter‟s high-pass filtered images. These quarters will contain 

horizontal, vertical, and diagonal edges of the image. We then apply a one-scale DWT to the 

top-left quarter, creating smaller images, and so on. This is called the nonstandard 

decomposition, and is illustrated in figure 4.9. 

 

 

Figure 4.9 The nonstandard decomposition of the two-dimensional DWT. 

Steps for performing a one-scale wavelet transform are given below: 

Step 1: Convolve the image rows with the low-pass filter. 
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Step 2 : Convolve the columns of the result of step 1 with the low-pass filter and rescale this 

to half its size by sub-sampling. 

Step 3 : Convolve the result of step 1 with high-pass filter and again sub-sample to obtain an 

image of half the size. 

Step 4 : Convolve the original image rows with the high-pass filter. 

Step 5: Convolve the columns of the result of step 4 with the low-pass filter and recycle this 

to half its size by sub-sampling. 

Step 6 :Convolve the result of step 4 with the high-pass filter and again sub-sample to obtain 

an image of half the size. 

At the end of these steps there are four images, each half the size of original. They are 

1. The low-pass / low-pass image (LL), the result of step 2, 

2. The low-pass / high-pass image (LH), the result of step 3, 

3. The high-pass / low-pass image (HL), the result of step 5, and 

4. The high-pass / high-pass image (HH), the result of step 6 

These images can be placed into a single image grid as shown in the figure 4.10. 
 

Figure 4.10 the one-scale wavelet transforms in terms of filters. 

Figure 4.11 describes the basic dwt decomposition steps for an image in a block 

diagram form. The two-dimensional DWT leads to a decomposition of image into four 

components CA, CH, CV and CD, where CA are approximation and CH, CV, CD are details 

in three orientations (horizontal, vertical, and diagonal), these are same as LL, LH, HL, and 

HH. In these coefficients the watermark can be embedded. 
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Figure 4.11 DWT decomposition steps for an image. 
 

Figure Original image and DWT decomposed image. 

An example of a discrete wavelet transform on an image is shown in Figure above. 

On the left is the original image data, and on the right are the coefficients after a single pass 

of the wavelet transform. The low-pass data is the recognizable portion of the image in the 

upper left corner. The high-pass components are almost invisible because image data contains 

mostly low frequency information. 
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IMAGE ENHANCEMENT 

 

Image enhancement approaches fall into two broad categories: spatial domain 

methods and frequency domain methods. The term spatial domain refers to the image plane 

itself, and approaches in this category are based on direct manipulation of pixels in an image. 

Frequency domain processing techniques are based on modifying the Fourier 

transform of an image. Enhancing an image provides better contrast and a more detailed image as 

compare to non enhanced image. Image enhancement has very good applications. It is used to 

enhance medical images, images captured in remote sensing, images from satellite e.t.c. As indicated 

previously, the term spatial domain refers to the aggregate of pixels composing an image. 

Spatial domain methods are procedures that operate directly on these pixels. Spatial domain 

processes will be denoted by the expression. 

g(x,y) = T[f(x,y)] 

where f(x, y) is the input image, g(x, y) is the processed image, and T is an operator 

on f, defined over some neighborhood of (x, y). The principal approach in defining a 

neighborhood about a point (x, y) is to use a square or rectangular subimage area centered at 

(x, y), as Fig. 2.1 shows. The center of the subimage is moved from pixel to pixel starting, 

say, at the top left corner. The operator T is applied at each location (x, y) to yield the output, 

g, at that location. The process utilizes only the pixels in the area of the image spanned by the 

neighborhood. 

Fig.: 3x3 neighborhood about a point (x,y) in an image. 

The simplest form of T is when the neighborhood is of size 1*1 (that is, a single pixel). In 

this case, g depends only on the value of f at (x, y), and T becomes a gray-level (also called 

an intensity or mapping) transformation function of the form 
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s = T ( r ) 

where r is the pixels of the input image and s is the pixels of the output image. T is a 

transformation function that maps each value of „r‟ to each value of „s‟. 

For example, if T(r) has the form shown in Fig. 2.2(a), the effect of this transformation would 

be to produce an image of higher contrast than the original by darkening the levels below m 

and brightening the levels above m in the original image. In this technique, known as contrast 

stretching, the values of r below m are compressed by the transformation function into a 

narrow range of s, toward black.The opposite effect takes place for values of r above m. 

In the limiting case shown in Fig. 2.2(b), T(r) produces a two-level (binary) image. A 

mapping of this form is called a thresholding function. 

One of the principal approaches in this formulation is based on the use of so-called 

masks (also referred to as filters, kernels, templates, or windows). Basically, a mask is a small 

(say, 3*3) 2-D array, such as the one shown in Fig. 2.1, in which the values of the mask 

coefficients determine the nature of the process, such as image sharpening. Enhancement 

techniques based on this type of approach often are referred to as mask processing or 

filtering. 

 

 

Fig. 2.2 Gray level transformation functions for contrast enhancement. 

Image enhancement can be done through gray level transformations which are 

discussed below. 

BASIC GRAY LEVEL TRANSFORMATIONS: 

Image negative 

Log transformations 

Power law transformations 

Piecewise-Linear transformation functions 

LINEAR TRANSFORMATION: 

First we will look at the linear transformation. Linear transformation includes simple 

identity and negative transformation. Identity transformation has been discussed in our 



 

30  

Negative 

nth root 

Log 
nth power 

Identity Inverse Log 

 

tutorial of image transformation, but a brief description of this transformation has been given 

here. 

Identity transition is shown by a straight line. In this transition, each value of the 

input image is directly mapped to each other value of output image. That results in the same 

input image and output image. And hence is called identity transformation. It has been 

shown below: 

 

Fig. Linear transformation between input and output. 

NEGATIVE TRANSFORMATION: 

The second linear transformation is negative transformation, which is invert of 

identity transformation. In negative transformation, each value of the input image is 

subtracted from the L-1 and mapped onto the output image 

IMAGE NEGATIVE: The image negative with gray level value in the range of [0, L-1] is obtained by 

negative transformation given by S = T(r) or 

S = L -1 – r 

Where r= gray level value at pixel (x,y) 

L is the largest gray level consists in the image 

It results in getting photograph negative. It is useful when for enhancing white details embedded in dark 

regions of the image. 

The overall graph of these transitions has been shown below. 
 

Input gray level, r 
 

Fig. Some basic gray-level transformation functions used for image enhancement. 



 

31  

 

In this case the following transition has been done. 

s = (L – 1) – r 

since the input image of Einstein is an 8 bpp image, so the number of levels in this image are 

256. Putting 256 in the equation, we get this 

s = 255 – r 

So each value is subtracted by 255 and the result image has been shown above. So what 

happens is that, the lighter pixels become dark and the darker picture becomes light. And it 

results in image negative. 

It has been shown in the graph below. 
 

Fig. Negative transformations. 

LOGARITHMIC TRANSFORMATIONS: 

Logarithmic transformation further contains two type of transformation. Log transformation 

and inverse log transformation. 

LOG TRANSFORMATIONS: 

The log transformations can be defined by this formula 

s = c log(r + 1). 

Where s and r are the pixel values of the output and the input image and c is a constant. The 

value 1 is added to each of the pixel value of the input image because if there is a pixel 

intensity of 0 in the image, then log (0) is equal to infinity. So 1 is added, to make the 

minimum value at least 1. 

During log transformation, the dark pixels in an image are expanded as compare to the 

higher pixel values. The higher pixel values are kind of compressed in log transformation. 

This result in following image enhancement. 

An another way of representing LOG TRANSFORMATIONS: Enhance details in the darker regions of an 

image at the expense of detail in brighter regions. 

T(f) = C * log (1+r) 

 Here C is constant and r ≥ 0. 
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 The shape of the curve shows that this transformation maps the narrow range of low gray level 

values in the input image into a wider range of output image. 

 The opposite is true for high level values of input image. 
 

Fig. log transformation curve input vs output 

POWER – LAW TRANSFORMATIONS: 

There are further two transformation is power law transformations, that include nth 

power and nth root transformation. These transformations can be given by the expression: 

s=cr
γ
 

This symbol γ is called gamma, due to which this transformation is also known as 

gamma transformation. 

Variation in the value of γ varies the enhancement of the images. Different display 

devices / monitors have their own gamma correction, that‟s why they display their image at 

different intensity. 

where c and g are positive constants. Sometimes Eq. (6) is written as S =   C (r +ε) 
γ
 

to account for an offset (that is, a measurable output when the input is zero). Plots of s versus 

r for various values of γ are shown in Fig. 2.10. As in the case of the log transformation, 

power-law curves with fractional values of γ map a narrow range of dark input values into a 

wider range of output values, with the opposite being true for higher values of input levels. 

Unlike the log function, however, we notice here a family of possible transformation curves 

obtained simply by varying γ. 

In Fig that curves generated with values of γ>1 have exactly The opposite effect as those 

generated with values of γ<1. Finally, we Note that Eq. (6) reduces to the identity 

transformation when c=γ=1. 
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Fig. 2.13 Plot of the equation S = cr
γ
 for various values of γ (c =1 in all cases). 

This type of transformation is used for enhancing images for different type of display 

devices. The gamma of different display devices is different. For example Gamma of CRT 

lies in between of 1.8 to 2.5, that means the image displayed on CRT is dark. 

Varying gamma (γ) obtains family of possible transformation curves S = C* r 
γ
 

Here C and γ are positive constants. Plot of S versus r for various values of γ is 

γ > 1 compresses dark values 

Expands bright values 

γ < 1 (similar to Log transformation) 

Expands dark values 

Compresses bright values 

When C = γ = 1 , it reduces to identity transformation . 

CORRECTING GAMMA: 

s=cr
γ
 

s=cr (1/2.5) 

The same image but with different gamma values has been shown here. 

Piecewise-Linear Transformation Functions: 

A complementary approach to the methods discussed in the previous three sections is 

to use piecewise linear functions. The principal advantage of piecewise linear functions over 

the types of functions we have discussed thus far is that the form of piecewise functions can 

be arbitrarily complex. 

The principal disadvantage of piecewise functions is that their specification requires 

considerably more user input. 

Contrast stretching: One of the simplest piecewise linear functions is a contrast-stretching 

transformation. Low-contrast images can result from poor illumination, lack of dynamic 
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range in the imaging sensor, or even wrong setting of a lens aperture during image 

acquisition. 

S= T(r ) 

Figure x(a) shows a typical transformation used for contrast stretching. The locations 

of points (r1, s1) and (r2, s2) control the shape of the transformation 

Function. If r1=s1 and r2=s2, the transformation is a linear function that produces No 

changes in gray levels. If r1=r2, s1=0and s2= L-1, the transformation Becomes a thresholding 

function that creates a binary image, as illustrated In fig. 2.2(b). 

Intermediate values of ar1, s1b and ar2, s2b produce various degrees Of spread in the 

gray levels of the output image, thus affecting its contrast. In general, r1≤ r2 and s1 ≤ s2 is 

assumed so that the function is single valued and Monotonically increasing. 

 

Fig. x Contrast stretching. (a) Form of transformation function. (b) A low-contrast stretching. 

(c) Result of contrast stretching. (d) Result of thresholding (original image courtesy of 

Dr.Roger Heady, Research School of Biological Sciences, Australian National University 

Canberra Australia. 

Figure x(b) shows an 8-bit image with low contrast. Fig. x(c) shows the result of contrast 

stretching, obtained by setting (r1, s1 )=(rmin, 0) and (r2, s2)=(rmax,L-1) where rmin and rmax 

denote the minimum and maximum gray levels in the image, respectively.Thus, the 

transformation function stretched the levels linearly from their original range to the full range 



 

35  

 

[0, L-1]. Finally, Fig. x(d) shows the result of using the thresholding function defined 

previously, 

with r1=r2=m, the mean gray level in the image. The original image on which these results 

are based is a scanning electron microscope image of pollen, magnified approximately 700 

times. 

Gray-level slicing: 

Highlighting a specific range of gray levels in an image often is desired. Applications 

include enhancing features such as masses of water in satellite imagery and enhancing flaws 

in X-ray images. 

There are several ways of doing level slicing, but most of them are variations of two 

basic themes.One approach is to display a high value for all gray levels in the range of 

interest and a low value for all other gray levels. 

This transformation, shown in Fig. y(a), produces a binary image. The second 

approach, based on the transformation shown in Fig.y (b), brightens the desired range of gray 

levels but preserves the background and gray-level tonalities in the image. Figure y (c) shows 

a gray-scale image, and Fig. y(d) shows the result of using the transformation in Fig. 

y(a).Variations of the two transformations shown in Fig. are easy to formulate. 

 

Fig. y (a)This transformation highlights range [A,B] of gray levels and reduces all others to a 

constant level (b) This transformation highlights range [A,B] but preserves all other levels. 

(c) An image . (d) Result of using the transformation in (a). 

BIT-PLANE SLICING: 

Instead of highlighting gray-level ranges, highlighting the contribution made to total 

image appearance by specific bits might be desired. Suppose that each pixel in an image is 

represented by 8 bits. Imagine that the image is composed of eight 1-bit planes, ranging from 

bit-plane 0 for the least significant bit to bit plane 7 for the most significant bit. In terms of 8- 
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bit bytes, plane 0 contains all the lowest order bits in the bytes comprising the pixels in the 

image and plane 7 contains all the high-order bits. 

Figure 3.12 illustrates these ideas, and Fig. 3.14 shows the various bit planes for the 

image shown in Fig. 3.13. Note that the higher-order bits (especially the top four) contain the 

majority of the visually significant data.The other bit planes contribute to more subtle details 

in the image. Separating a digital image into its bit planes is useful for analyzing the relative 

importance played by each bit of the image, a process that aids in determining the adequacy 

of the number of bits used to quantize each pixel. 

 

In terms of bit-plane extraction for an 8-bit image, it is not difficult to show that the 

(binary) image for bit-plane 7 can be obtained by processing the input image with a 

thresholding gray-level transformation function that (1) maps all levels in the image between 

0 and 127 to one level (for example, 0); and (2) maps all levels between 129 and 255 to 

another (for example, 255).The binary image for bit-plane 7 in Fig. 3.14 was obtained in just 

this manner. It is left as an exercise 

(Problem 3.3) to obtain the gray-level transformation functions that would yield the other bit 

planes. 

Histogram Processing: 

The histogram of a digital image with gray levels in the range [0, L-1] is a discrete 

function of the form 

H(rk)=nk 

where rk is the kth gray level and nk is the number of pixels in the image having the 

level rk.. A normalized histogram is given by the equation 

p(rk)=nk/n for k=0,1,2,…..,L-1 

P(rk) gives the estimate of the probability of occurrence of gray level rk. 

The sum of all components of a normalized histogram is equal to 1. 

The histogram plots are simple plots of H(rk)=nk versus rk. 
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In the dark image the components of the histogram are concentrated on the low (dark) side 

of the gray scale. In case of bright image the histogram components are baised towards the 

high side of the gray scale. The histogram of a low contrast image will be narrow and will 

be centered towards the middle of the gray scale. 

The components of the histogram in the high contrast image cover a broad range of the gray 

scale. The net effect of this will be an image that shows a great deal of gray levels details 

and has high dynamic range. 

 
 

 

Histogram Equalization: 

Histogram equalization is a common technique for enhancing the appearance of images. 

Suppose we have an image which is predominantly dark. Then its histogram would be 
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skewed towards the lower end of the grey scale and all the image detail are compressed into 

the dark end of the histogram. If we could „stretch out‟ the grey levels at the dark end to 

produce a more uniformly distributed histogram then the image would become much 

clearer. 

Let there be a continuous function with r being gray levels of the image to be enhanced. The 

range of r is [0, 1] with r=0 repressing black and r=1 representing white. The transformation 

function is of the form 

S=T(r) where 0<r<1 

It produces a level s for every pixel value r in the original image. 
 

The transformation function is assumed to fulfill two condition T(r) is single valued and 

monotonically increasing in the internal 0<T(r)<1 for 0<r<1.The transformation 

function should be single valued so that the inverse transformations should exist. 

Monotonically increasing condition preserves the increasing order from black to white 

in the output image. The second conditions guarantee that the output gray levels will be 

in the same range as the input levels. The gray levels of the image may be viewed as 

random variables in the interval [0.1]. The most fundamental descriptor of a random 

variable is its probability density function (PDF) Pr(r) and Ps(s) denote the probability 

density functions of random variables r and s respectively. Basic results from an 

elementary probability theory states that if Pr(r) and Tr are known and T-1(s) satisfies 

conditions (a), then the probability density function Ps(s) of the transformed variable is 

given by the formula 
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Thus the PDF of the transformed variable s is the determined by the gray levels PDF of 

the input image and by the chosen transformations function. 

A transformation function of a particular importance in image processing 
 

 

This is the cumulative distribution function of r. 

L is the total number of possible gray levels in the image. 

IMAGE ENHANCEMENT IN FREQUENCY DOMAIN 

BLURRING/NOISE REDUCTION: Noise characterized by sharp transitions in image 

intensity. Such transitions contribute significantly to high frequency components of Fourier 

transform. Intuitively, attenuating certain high frequency components result in blurring and 

reduction of image noise. 

IDEAL LOW-PASS FILTER: 

Cuts off all high-frequency components at a distance greater than a certain distance 

from origin (cutoff frequency). 

H (u,v) = 1, if D(u,v) ≤ D0 

0, if D(u,v) ˃ D0 

Where D0 is a positive constant and D(u,v) is the distance between a point (u,v) in the 

frequency domain and the center of the frequency rectangle; that is 

D(u,v) = [(u-P/2)
2
 + (v-Q/2)

2
] 

1/2
 

Where as P and Q are the padded sizes from the basic equations 

Wraparound error in  their circular convolution can be avoided by padding these 

functions with zeros, 

VISUALIZATION: IDEAL LOW PASS FILTER: 

Aa shown in fig.below 
 

 

Fig: ideal low pass filter 3-D view and 2-D view and line graph. 
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EFFECT OF DIFFERENT CUTOFF FREQUENCIES: 

Fig.below(a) Test pattern of size 688x688 pixels, and (b) its Fourier spectrum. The spectrum 

is double the image size due to padding but is shown in half size so that it fits in the page. 

The superimposed circles have radii equal to 10, 30, 60, 160 and 460 with respect to the full- 

size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8 and 99.2% of the padded 

image power respectively. 

 

Fig: (a) Test patter of size 688x688 pixels (b) its Fourier spectrum 
 

Fig: (a) original image, (b)-(f) Results of filtering using ILPFs with cutoff frequencies 

set at radii values 10, 30, 60, 160 and 460, as shown in fig.2.2.2(b). The power removed by 

these filters was 13, 6.9, 4.3, 2.2 and 0.8% of the total, respectively. 
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As the cutoff frequency decreases, 

 image becomes more blurred 

 Noise becomes increases 

 Analogous to larger spatial filter sizes 

The severe blurring in this image is a clear indication that most of the sharp detail 

information in the picture is contained in the 13% power removed by the filter. As the filter 

radius is increases less and less power is removed, resulting in less blurring. Fig. (c ) through 

(e) are characterized by “ringing” , which becomes finer in texture as the amount of high 

frequency content removed decreases. 

WHY IS THERE RINGING? 

Ideal low-pass filter function is a rectangular function 

The inverse Fourier transform of a rectangular function is a sinc function. 
 

Fig. Spatial representation of ILPFs of order 1 and 20 and corresponding intensity 

profiles through the center of the filters( the size of all cases is 1000x1000 and the cutoff 

frequency is 5), observe how ringing increases as a function of filter order. 

BUTTERWORTH LOW-PASS FILTER: 

Transfor funtion of a Butterworth lowpass filter (BLPF) of order n, and with cutoff 

frequency at a distance D0 from the origin, is defined as 



 

42  

 

 

 

 

 

- 
 

 

Transfer function does not have sharp discontinuity establishing cutoff between 

passed and filtered frequencies. 

Cut off frequency D0 defines point at which H(u,v) = 0.5 
 

Fig. (a) perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter 

displayed as an image. (c)Filter radial cross sections of order 1 through 4. 

Unlike the ILPF, the BLPF transfer function does not have a sharp discontinuity that 

gives a clear cutoff between passed and filtered frequencies. 

BUTTERWORTH LOW-PASS FILTERS OF DIFFEREN T FREQUENCIES: 
 

Fig. (a) Original image.(b)-(f) Results of filtering using BLPFs of order 2, with cutoff 

frequencies at the radii 
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Fig. shows the results of applying the BLPF of eq. to fig.(a), with n=2 and D0 equal to 

the five radii in fig.(b) for the ILPF, we note here a smooth transition in blurring as a function 

of increasing cutoff frequency. Moreover, no ringing is visible in any of the images 

processed with this particular BLPF, a fact attributed to the filter‟s smooth transition 

between low and high frequencies. 

A BLPF of order 1 has no ringing in the spatial domain. Ringing generally is 

imperceptible in filters of order 2, but can become significant in filters of higher order. 

Fig.shows a comparison between the spatial representation of BLPFs of various 

orders (using a cutoff frequency of 5 in all cases). Shown also is the intensity profile along a 

horizontal scan line through the center of each filter. The filter of order 2 does show mild 

ringing and small negative values, but they certainly are less pronounced than in the ILPF. A 

butter worth filter of order 20 exhibits characteristics similar to those of the ILPF (in the 

limit, both filters are identical). 

 

Fig.2.2.7 (a)-(d) Spatial representation of BLPFs of order 1, 2, 5 and 20 and 

corresponding intensity profiles through the center of the filters (the size in all cases is 1000 x 

1000 and the cutoff frequency is 5) Observe how ringing increases as a function of filter 

order. 

GAUSSIAN LOWPASS FILTERS: 

The form of these filters in two dimensions is given by 
 

 This transfer function is smooth , like Butterworth filter. 

 Gaussian in frequency domain remains a Gaussian in spatial domain 

 Advantage: No ringing artifacts. 
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Where D0 is the cutoff frequency. When D(u,v) = D0, the GLPF is down to 0.607 of its 

maximum value. This means that a spatial Gaussian filter, obtained by computing the IDFT 

of above equation., will have no ringing. Fig..shows a perspective plot, image display and 

radial cross sections of a GLPF function. 

 

 
Fig. (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. 

(c). Filter radial cross sections for various values of D0 

 

Fig.(a) Original image. (b)-(f) Results of filtering using GLPFs with cutoff 

frequencies at the radii shown in fig.2.2.2. compare with fig.2.2.3 and fig.2.2.6 
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Fig. (a) Original image (784x 732 pixels). (b) Result of filtering using a GLPF with 

D0 = 100. (c) Result of filtering using a GLPF with D0 = 80. Note the reduction in fine skin 

lines in the magnified sections in (b) and (c). 

Fig. shows an application of lowpass filtering for producing a smoother, softer- 

looking result from a sharp original. For human faces, the typical objective is to reduce the 

sharpness of fine skin lines and small blemished. 

IMAGE SHARPENING USING FREQUENCY DOMAIN FILTERS: 

An image can be smoothed by attenuating the high-frequency components of its 

Fourier transform. Because edges and other abrupt changes in intensities are associated with 

high-frequency components, image sharpening can be achieved in the frequency domain by 

high pass filtering, which attenuates the low-frequency components without disturbing high- 

frequency information in the Fourier transform. 

The filter function H(u,v) are understood to be discrete functions of size PxQ; that is 

the discrete frequency variables are in the range u = 0,1,2,…….P-1 and  v = 0,1,2,…….Q-1. 

The meaning of sharpening is 

 Edges and fine detail characterized by sharp transitions in image intensity 

 Such transitions contribute significantly to high frequency components of 

Fourier transform 

 Intuitively, attenuating certain low frequency components and preserving high 

frequency components result in sharpening. 

Intended goal is to do the reverse operation of low-pass filters 

 When low-pass filter attenuated frequencies, high-pass filter passes them 
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 When high-pass filter attenuates frequencies, low-pass filter passes them. 

A high pass filter is obtained from a given low pass filter using the equation. 

H hp (u,v) = 1- Htp (u,v) 

Where Hlp (u,v) is the transfer function of the low-pass filter. That is when the low- 

pass filter attenuates frequencies, the high-pass filter passed them, and vice-versa. 

We consider ideal, Butter-worth, and Gaussian high-pass filters. As in the previous 

section, we illustrate the characteristics of these filters in both the frequency and spatial 

domains. Fig.. shows typical 3-D plots, image representations and cross sections for these 

filters. As before, we see that the Butter-worth filter represents a transition between the 

sharpness of the ideal filter and the broad smoothness of the Gaussian filter. Fig.discussed in 

the sections the follow, illustrates what these filters look like in the spatial domain. The 

spatial filters were obtained and displayed by using the procedure used. 

 

Fig: Top row: Perspective plot, image representation, and cross section of a typical 

ideal high-pass filter. Middle and bottom rows: The same sequence for typical butter-worth 

and Gaussian high-pass filters. 

IDEAL HIGH-PASS FILTER: 

A 2-D ideal high-pass filter (IHPF) is defined as 

H (u,v) = 0, if D(u,v) ≤ D0 

1, if D(u,v) ˃ D0 
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Where D0 is the cutoff frequency and D(u,v) is given by eq. As intended, the IHPF is 

the opposite of the ILPF in the sense that it sets to zero all frequencies inside a circle of 

radius D0 while passing, without attenuation, all frequencies outside the circle. As in case of 

the ILPF, the IHPF is not physically realizable. 

                     SPATIAL REPRESENTATION OF HIGHPASS FILTERS: 
 

Fig.. Spatial representation of typical (a) ideal (b) Butter-worth and (c) Gaussian 

frequency domain high-pass filters, and corresponding intensity profiles through their centers. 

We can expect IHPFs to have the same ringing properties as ILPFs. This is 

demonstrated clearly in Fig.. which consists of various IHPF results using the original image 

in Fig.(a) with D0 set to 30, 60,and 160 pixels, respectively. The ringing in Fig. (a) is so 

severe that it produced distorted, thickened object boundaries (e.g.,look at the large letter “a” 

). Edges of the top three circles do not show well because they are not as strong as the other 

edges in the image (the intensity of these three objects is much closer to the background 

intensity, giving discontinuities of smaller magnitude). 

                                 FILTERED RESULTS: IHPF 
 

Fig.. Results of high-pass filtering the image in Fig.(a) using an IHPF with D0 = 30, 

60, and 160. 



 

48  

 

The situation improved somewhat with D0 = 60. Edge distortion is quite evident still, 

but now we begin to see filtering on the smaller objects. Due to the now familiar inverse 

relationship between the frequency and spatial domains, we know that the spot size of this 

filter is smaller than the spot of the filter with D0 = 30. The result for D0 = 160 is closer to 

what a high-pass filtered image should look like. Here, the edges are much cleaner and less 

distorted, and the smaller objects have been filtered properly. 

Of course, the constant background in all images is zero in these high-pass filtered 

images because highpass filtering is analogous to differentiation in the spatial domain. 

BUTTER-WORTH HIGH-PASS FILTERS: 

A 2-D Butter-worth high-pass filter (BHPF) of order n and cutoff frequency D0 is defined as 
 

Where D(u,v) is given by Eq.(3). This expression follows directly from Eqs.(3) and (6). The 

middle row of Fig.2.2.11. shows an image and cross section of the BHPF function. 

Butter-worth high-pass filter to behave smoother than IHPFs. Fig.2.2.14.shows the 

performance of a BHPF of order 2 and with D0 set to the same values as in Fig.2.2.13. The 

boundaries are much less distorted than in Fig.2.2.13. even for the smallest value of cutoff 

frequency. 

FILTERED RESULTS: BHPF: 
 

Fig. Results of high-pass filtering the image in Fig.2.2.2(a) using a BHPF of order 2 

with D0 = 30, 60, and 160 corresponding to the circles in Fig.2.2.2(b). These results are much 

smoother than those obtained with an IHPF. 

GAUSSIAN HIGH-PASS FILTERS: 

The transfer function of the Gaussian high-pass filter(GHPF) with cutoff frequency 

locus at a distance D0 from the center of the frequency rectangle is given by 
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Where D(u,v) is given by Eq.(4). This expression follows directly from Eqs.(2) and 

(6). The third row in Fig.2.2.11. shows a perspective plot, image and cross section of the 

GHPF function. Following the same format as for the BHPF, we show in Fig.2.2.15. 

comparable results using GHPFs. As expected, the results obtained are more gradual than 

with the previous two filters. 

FILTERED RESULTS:GHPF: 
 

Fig. Results of high-pass filtering the image in fig.(a) using a GHPF with D0 = 30, 60 

and 160, corresponding to the circles in Fig.(b). 
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IMAGE RESTORATION 

 

IMAGE RESTORATION: 

Restoration improves image in some predefined sense. It is an objective process. 

Restoration attempts to reconstruct an image that has been degraded by using a priori 

knowledge of the degradation phenomenon. These techniques are oriented toward 

modeling the degradation and then applying the inverse process in order to recover the 

original image. Restoration techniques are based on mathematical or probabilistic 

models of image processing. Enhancement, on the other hand is based on human 

subjective preferences regarding what constitutes a “good” enhancement result. Image 

Restoration refers to a class of methods that aim to remove or reduce the degradations 

that have occurred while the digital image was being obtained. All natural images when 

displayed have gone through some sort of degradation: 

 During display mode 

 Acquisition mode, or 

 Processing mode 

 Sensor noise 

 Blur due to camera mis focus 

 Relative object-camera motion 

 Random atmospheric turbulence 

 Others 

Degradation Model: 

Degradation process operates on a degradation function that operates on an input 

image with an additive noise term. Input image is represented by using the notation 

f(x,y), noise term can be represented as η(x,y).These two terms when combined gives 

the result as g(x,y). If we are given g(x,y), some knowledge about the degradation 

function H or J and some knowledge about the additive noise teem η(x,y), the objective 

of restoration is to obtain an estimate f'(x,y) of the original image. We want the estimate 

to be as close as possible to the original image. The more we know about h and η , the 

closer f(x,y) will be to f'(x,y). If it is a linear position invariant process, then degraded 

image is given in the spatial domain by 

g(x,y)=f(x,y)*h(x,y)+η(x,y) 
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h(x,y) is spatial representation of degradation function and symbol * represents 

convolution. In frequency domain we may write this equation as 

G(u,v)=F(u,v)H(u,v)+N(u,v) 

The terms in the capital letters are the Fourier Transform of the corresponding terms in 

the spatial domain. 

 

Fig: A model of the image Degradation / Restoration process 

Noise Models: 

The principal source of noise in digital images arises during image acquisition 

and /or transmission. The performance of imaging sensors is affected by a variety of 

factors, such as environmental conditions during image acquisition and by the quality of 

the sensing elements themselves. Images are corrupted during transmission principally 

due to interference in the channels used for transmission. Since main sources of noise 

presented in digital images are resulted from atmospheric disturbance and image sensor 

circuitry, following assumptions can be made i.e. the noise model is spatial invariant 

(independent of spatial location). The noise model is uncorrelated with the object 

function. 

Gaussian Noise: 

These noise models are used frequently in practices because of its tractability in both spatial 

and frequency domain. The PDF of Gaussian random variable is 

Where z represents the gray level, μ= mean of average value of z, σ= standard deviation. 
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Rayleigh Noise: 

Unlike Gaussian distribution, the Rayleigh distribution is no symmetric. It is given by 

the formula. 

The mean and variance of this density is 

 

 

(iii) Gamma Noise: 

The PDF of Erlang noise is given by 
 

The mean and variance of this density are given by 
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Its shape is similar to Rayleigh disruption. This equation is referred to as gamma density 

it is correct only when the denominator is the gamma function. 

(iv) Exponential Noise: 

Exponential distribution has an exponential shape. The PDF of exponential noise is given as 
 

Where a>0. The mean and variance of this density are given by 
 

 

 

(v) Uniform Noise: 

The PDF of uniform noise is given by 
 

The mean and variance of this noise is 
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(vi) Impulse (salt & pepper) Noise: 

In this case, the noise is signal dependent, and is multiplied to the image. 

The PDF of bipolar (impulse) noise is given by 

If b>a, gray level b will appear as a light dot in image. Level a will appear like a dark dot. 
 

Restoration in the presence of Noise only- Spatial filtering: 

When the only degradation present in an image is noise, i.e. 

g(x,y)=f(x,y)+η(x,y) 

or 

G(u,v)= F(u,v)+ N(u,v) 

The noise terms are unknown so subtracting them from g(x,y) or G(u,v) is not a 

realistic approach. In the case of periodic noise it is possible to estimate N(u,v) 

from the spectrum G(u,v). 

So N(u,v) can be subtracted from G(u,v) to obtain an estimate of original image. 

Spatial filtering can be done when only additive noise is present. The following 

techniques can be used to reduce the noise effect: 
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i) Mean Filter: 

ii) (a)Arithmetic Mean filter: 

It is the simplest mean filter. Let Sxy represents the set of coordinates in the sub 

image of size m*n centered at point (x,y). The arithmetic mean filter computes the 

average value of the corrupted image g(x,y) in the area defined by Sxy. The value of the 

restored image f at any point (x,y) is the arithmetic mean computed using the pixels in 

the region defined by Sxy. 

This operation can be using a convolution mask in which all coefficients have 

value 1/mn A mean filter smoothes local variations in image Noise is reduced as a result 

of blurring. For every pixel in the image, the pixel value is replaced by the mean value 

of its neighboring pixels with a weight .This will resulted in a smoothing effect in the 

image. 

(b) Geometric Mean filter: 

An image restored using a geometric mean filter is given by the expression 
 

Here, each restored pixel is given by the product of the pixel in the sub image window, 

raised to the power 1/mn. A geometric mean filters but it to loose image details in the 

process. 

(c) Harmonic Mean filter: 

The harmonic mean filtering operation is given by the expression 
 

The harmonic mean filter works well for salt noise but fails for pepper noise. It does 

well with Gaussian noise also. 

(d) Order statistics filter: 

Order statistics filters are spatial filters whose response is based on ordering the pixel 

contained in the image area encompassed by the filter. The response of the filter at any 

point is determined by the ranking result. 
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(e) Median filter: 

It is the best order statistic filter; it replaces the value of a pixel by the median of gray 

levels in the Neighborhood of the pixel. 

The original of the pixel is included in the computation of the median of the filter are 

quite possible because for certain types of random noise, the provide excellent noise 

reduction capabilities with considerably less blurring then smoothing filters of similar 

size. These are effective for bipolar and unipolor impulse noise. 

(e) Max and Min filter: 

Using the l00th percentile of ranked set of numbers is called the max filter and is given 

by the equation 

It is used for finding the brightest point in an image. Pepper noise in the image has very 

low values, it is reduced by max filter using the max selection process in the sublimated 

area sky. The 0th percentile filter is min filter. 

 

This filter is useful for flinging the darkest point in image. Also, it reduces salt noise 

of the min operation. 

(f) Midpoint filter: 

The midpoint filter simply computes the midpoint between the maximum and minimum 

values in the area encompassed by 

It comeliness the order statistics and averaging .This filter works best for randomly 

distributed noise like Gaussian or uniform noise. 

Periodic Noise by Frequency domain filtering: 

These types of filters are used for this purpose- 

Band Reject Filters: 

It removes a band of frequencies about the origin of the Fourier transformer. 

Ideal Band reject Filter: 
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An ideal band reject filter is given by the expression 
 
 

D(u,v)- the distance from the origin of the centered frequency rectangle. 

W- the width of the band 

Do- the radial center of the frequency rectangle. 

Butterworth Band reject Filter: 

 

 

 

 

 

Gaussian Band reject Filter: 

 

 

 
These filters are mostly used when the location of noise component in the frequency 

domain is known. Sinusoidal noise can be easily removed by using these kinds of 

filters because it shows two impulses that are mirror images of each other about the 

origin. Of the frequency transform. 

Band pass Filter: 

The function of a band pass filter is opposite to that of a band reject filter It allows a specific 

frequency band of the image to be passed and blocks the rest of frequencies. The transfer 

function of a band pass filter can be obtained from a corresponding band reject filter with 

transfer function Hbr(u,v) by using the equation 
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These filters cannot be applied directly on an image because it may remove too much details 

of an image but these are effective in isolating the effect of an image of selected frequency 

bands. 

Notch Filters: 

A notch filter rejects (or passes) frequencies in predefined neighborhoods about a 

center frequency. 

Due to the symmetry of the Fourier transform notch filters must appear in symmetric 

pairs about the origin. 

The transfer function of an ideal notch reject filter of radius D0 with centers a (u0 , v0) 

and by symmetry at (-u0 , v0) is 

Ideal, butterworth, Gaussian notch filters 
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Inverse Filtering: 

The simplest approach to restoration is direct inverse filtering where we complete an 

estimate   of the transform of the original image simply by dividing the transform 

of the degraded image G(u,v) by degradation function H(u,v) 
 

We know that 
 

Therefore 
 

From the above equation we observe that we cannot recover the undegraded image 

exactly because N(u,v) is a random function whose Fourier transform is not known. 

One approach to get around the zero or small-value problem is to limit the filter 

frequencies to values near the origin. 

We know that H(0,0) is equal to the average values of h(x,y). 

By Limiting the analysis to frequencies near the origin we reduse the probability of 

encountering zero values. 

Minimum mean Square Error (Wiener) filtering: 

The inverse filtering approach has poor performance. The wiener filtering approach 

uses the degradation function and statistical characteristics of noise into the 

restoration process. 

The objective is to find an estimate   of the uncorrupted image f such that the mean 

square error between them is minimized. 

The error measure is given by 
 

 

Where E{.} is the expected value of the argument. 

We assume that the noise and the image are uncorrelated one or the other has zero 

mean. 

The gray levels in the estimate are a linear function of the levels in the degraded 

image. 
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Where H(u,v)= degradation function 

H*(u,v)=complex conjugate of H(u,v) 

| H(u,v)|
2
=H* (u,v) H(u,v) 

Sn(u,v)=|N(u,v)|
2
= power spectrum of the noise 

Sf(u,v)=|F(u,v)|
2
= power spectrum of the underrated image 

The power spectrum of the undegraded image is rarely known. An approach used 

frequently when these quantities are not known or cannot be estimated then the 

expression used is 

 

Where K is a specified constant. 

Constrained least squares filtering: 

The wiener filter has a disadvantage that we need to know the power spectra of the 

undegraded image and noise. The constrained least square filtering requires only the 

knowledge of only the mean and variance of the noise. These parameters usually can 

be calculated from a given degraded image this is the advantage with this method. 

This method produces a optimal result. This method require the optimal criteria 

which is important we express the 

 
in vector-matrix form 

 

The optimality criteria for restoration is based on a measure of smoothness, such as 

the second derivative of an image (Laplacian). 

The minimum of a criterion function C defined as 
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Subject to the constraint 
 

Where   is a euclidean vector norm   is estimate of the undegraded 

image.   is laplacian operator. 

The frequency domain solution to this optimization problem is given by 
 

Where γ is a parameter that must be adjusted so that the constraint is satisfied. 

P(u,v) is the Fourier transform of the laplacian operator 

 


