米米米米米米米米米米粎米米米米米米米米米


ARULIIIGU PALANIANDAVR ARTS COLLEGE FOR WOMEN
（Re－Accredited with＇$B^{\text {t＋1 }}$ Grade by NAAC $3^{\text {rid }}$ Cycle）
Run by Arulmigu Dhandayuthapani Swamy Thirukoil，H．R \＆C．E Dept．Government of Tamil Nadu A Government Aided College－Affliated to Mother Teresa Women＇s University，Kodaikanal CHINNAKALAYAMPUTHUR（PO），PALANI－ 624615

DEPARTMENT OF COMPUTER SCIENCE


COMPUTER APPLICATION

## LEARNING RESOURCE






Figure : Components of Image processing System
Image Sensors: With reference to sensing, two elements are required to acquire digital image. The first is a physical device that is sensitive to the energy radiated by the object we wish to image and second is specialized image processing hardware.
Specialize image processing hardware: It consists of the digitizer just mentioned, plus hardware that performs other primitive operations such as an arithmetic logic unit, which performs arithmetic such addition and subtraction and logical operations in parallel on images. Computer: It is a general purpose computer and can range from a PC to a supercomputer depending on the application. In dedicated applications, sometimes specially designed computer are used to achieve a required level of performance
Software: It consists of specialized modules that perform specific tasks a well designed package also includes capability for the user to write code, as a minimum, utilizes the specialized module. More sophisticated software packages allow the integration of these modules.





## A Simple Image Model：

An image is denoted by a two dimensional function of the form $f\{x, y\}$ ．The value or amplitude of $f$ at spatial coordinates $\{x, y\}$ is a positive scalar quantity whose physical meaning is determined by the source of the image．When an image is generated by a physical process，its values are proportional to energy radiated by a physical source．As a consequence， $\mathrm{f}(\mathrm{x}, \mathrm{y})$ must be nonzero and finite；that is $\mathrm{o}<\mathrm{f}(\mathrm{x}, \mathrm{y})<$ co The function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ may be characterized by two components－The amount of the source illumination incident on the scene being viewed．
（a）The amount of the source illumination reflected back by the objects in the scene These are called illumination and reflectance components and are denoted by $\mathrm{i}(\mathrm{x}, \mathrm{y})$ an $\mathrm{r}(\mathrm{x}, \mathrm{y})$ respectively．
The functions combine as a product to form $f(x, y)$ ．We call the intensity of a monochrome image at any coordinates（ $x, y$ ）the gray level（ 1 ）of the image at that point $\mathrm{l}=\mathrm{f}(\mathrm{x}, \mathrm{y}$.

$$
\mathrm{L}_{\min } \leq 1 \leq \mathrm{L}_{\max }
$$

$\mathrm{L}_{\text {min }}$ is to be positive and Lmax must be finite

$$
\begin{aligned}
\mathrm{L}_{\min } & =\mathrm{i}_{\min } \mathrm{r}_{\min } \\
\mathrm{L}_{\max } & =\mathrm{i}_{\max } \mathrm{r}_{\max }
\end{aligned}
$$

The interval［Lmin，Lmax］is called gray scale．Common practice is to shift this interval numerically to the interval $[0, \mathrm{~L}-1]$ where $\mathrm{l}=0$ is considered black and $\mathrm{l}=\mathrm{L}-1$ is considered

米米米米米米米米米米米米米米米
米
米
米
光
光
光
米

There are three types of computerized processes in the processing of image
1）Low level process－these involve primitive operations such as image processing to reduce noise，contrast enhancement and image sharpening．These kind of processes are characterized by fact the both inputs and output are images．
2）Mid level image processing－it involves tasks like segmentation，description of those objects to reduce them to a form suitable for computer processing，and classification of individual objects．The inputs to the process are generally images but outputs are attributes extracted from images．
3）High level processing－It involves＂making sense＂of an ensemble of recognized objects， as in image analysis，and performing the cognitive functions normally associated with vision．

## Representing Digital Images：

The result of sampling and quantization is matrix of real numbers．Assume that an image $f(x, y)$ is sampled so that the resulting digital image has $M$ rows and $N$ Columns．The values of the coordinates（ $\mathrm{x}, \mathrm{y}$ ）now become discrete quantities thus the value of the coordinates at orgin become $9 \mathrm{X}, \mathrm{y})=(0,0)$ The next Coordinates value along the first signify the iamge along the first row．it does not mean that these are the actual values of physical coordinates when the image was sampled．

| $f(x, y) \sim$ | $[/(000)$ | $f(1,1)$ | ＊＊ | $f(0,1, N-1)$ |
| :---: | :---: | :---: | :---: | :---: |
|  | f（1．0） | （1．1） | Fm | f0． $17-\mathrm{D}$ |
|  | ， |  |  | － |
|  | ， |  |  | $\cdots$ |
|  | ， |  |  | $\cdots$ |
|  | $(\mathrm{CN}-1.0)$ | $\mathrm{fCN}-1 \mathrm{I}$ | ＊＊＊ | $f(. v-1 . M-1)$ |

Thus the right side of the matrix represents a digital element，pixel or pel．The matrix can be represented in the following form as well．The sampling process may be viewed as partitioning the xy plane into a grid with the coordinates of the center of each grid being a pair of elements from the Cartesian products Z 2 which is the set of all ordered pair of elements $(\mathrm{Zi}, \mathrm{Zj})$ with Zi and Zj being integers from $Z$ ．Hence $f(x, y)$ is a digital image if gray

| ＊ | level（that is，a real number from the set of real number R ）to each distinct pair of coordinates |
| :---: | :---: |
|  | $(\mathrm{x}, \mathrm{y})$ ．This functional assignment is the quantization process．If the gray levels are also |
|  | integers， Z replaces R ，the and a digital image become a 2 D function whose coordinates and |
| ＊ | she amplitude value are integers．Due to processing storage and hardware consideration，the |
|  | number gray levels typically is an integer power of 2 ． |

$$
\mathrm{L}=2^{\mathrm{k}}
$$

Then，the number，$b$ ，of bites required to store a digital image is $B=M * N * k$ When $M=N$ ，the equation become $b=N^{2} * k$

When an image can have 2 k gray levels，it is referred to as＂$k$－bit＂．An image with 256 possible gray levels is called an＂ 8 －bit image＂$\left(256=2^{8}\right)$ ．

## Spatial and Gray level resolution：

Spatial resolution is the smallest discernible details are an image．Suppose a chart can be constructed with vertical lines of width w with the space between the also having width W ， so a line pair consists of one such line and its adjacent space thus．The width of the line pair is 2 w and there is $1 / 2 \mathrm{w}$ line pair per unit distance resolution is simply the smallest number of discernible line pair unit distance．
Gray levels resolution refers to smallest discernible change in gray levels．Measuring discernible change in gray levels is a highly subjective process reducing the number of bits R while repairing the spatial resolution constant creates the problem of false contouring．

It is caused by the use of an insufficient number of gray levels on the smooth areas of the digital image．It is called so because the rides resemble top graphics contours in a map．It is generally quite visible in image displayed using 16 or less uniformly spaced gray levels．

## Image sensing and Acquisition：

The types of images in which we are interested are generated by the combination of an ＂illumination＂source and the reflection or absorption of energy from that source by the elements of the＂scene＂being imaged．We enclose illumination and scene in quotes to emphasize the fact that they are considerably more general than the familiar situation in which a visible light source illuminates a common everyday 3－D（three－dimensional）scene． For example，the illumination may originate from a source of electromagnetic energy such as radar，infrared，or X－ray energy．But，as noted earlier，it could originate from less traditional sources，such as ultrasound or even a computer－generated illumination pattern．Similarly，the scene elements could be familiar objects，but they can just as easily be molecules，buried rock formations，or a human brain．We could even image a source，such as acquiring images




Fig: Image Acquisition using linear strip and circular strips.

## Image Acquisition using a Sensor Arrays:

The individual sensors arranged in the form of a 2-D array. Numerous electromagnetic and some ultrasonic sensing devices frequently are arranged in an array format. This is also the predominant arrangement found in digital cameras. A typical sensor for these cameras is a CCD array, which can be manufactured with a broad range of sensing properties and can be packaged in rugged arrays of elements or more. CCD sensors are used widely in digital cameras and other light sensing instruments. The response of each sensor is proportional to the integral of the light energy projected onto the surface of the sensor, a property that is used in astronomical and other applications requiring low noise images. Noise reduction is achieved by letting the sensor integrate the input light signal over minutes or even hours. The two dimensional, its key advantage is that a complete image can be obtained by focusing the energy pattern onto the surface of the array. Motion obviously is not necessary, as is the case with the sensor arrangements This figure shows the energy from an illumination source being reflected from a scene element, but, as mentioned at the beginning of this section, the energy also could be transmitted through the scene elements. The first function performed by the imaging system is to collect the incoming energy and focus it onto an image plane. If the illumination is light, the front end of the imaging system is a lens, which projects the viewed scene onto the lens focal plane. The sensor array, which is coincident with the focal plane, produces outputs proportional to the integral of the light received at each sensor. Digital and

## Image sampling and Quantization：

To create a digital image，we need to convert the continuous sensed data into digital form． This involves two processes：sampling and quantization．A continuous image， $\mathrm{f}(\mathrm{x}, \mathrm{y})$ ，that we want to convert to digital form．An image may be continuous with respect to the x －and y － coordinates，and also in amplitude．To convert it to digital form，we have to sample the function in both coordinates and in amplitude．Digitizing the coordinate values is called sampling．Digitizing the amplitude values is called quantization．



## Digital Image representation：

Digital image is a finite collection of discrete samples（pixels）of any observable object．The pixels represent a two－or higher dimensional＂view＂of the object，each pixel having its own discrete value in a finite range．The pixel values may represent the amount of visible light， infra red light，absortation of x－rays，electrons，or any other measurable value such as ultrasound wave impulses．The image does not need to have any visual sense；it is sufficient that the samples form a two－dimensional spatial structure that may be illustrated as an image． The images may be obtained by a digital camera，scanner，electron microscope，ultrasound stethoscope，or any other optical or non－optical sensor．Examples of digital image are：
－digital photographs
－satellite images
－radiological images（x－rays，mammograms）
－binary images，fax images，engineering drawings
Computer graphics，CAD drawings，and vector graphics in general are not considered in this course even though their reproduction is a possible source of an image．In fact，one goal of intermediate level image processing may be to reconstruct a model（e．g．vector representation）for a given digital image．

## RELATIONSHIP BETWEEN PIXELS：

We consider several important relationships between pixels in a digital image．

## NEIGHBORS OF A PIXEL

－A pixel $p$ at coordinates $(x, y)$ has four horizontal and vertical neighbors whose coordinates are given by：

$$
(x+1, y),(x-1, y),(x, y+1),(x, y-1)
$$

|  | $(x, y-1)$ |  |
| :---: | :---: | :---: |
| $(x-1, y)$ | $P(x, y)$ | $(\mathbf{x}+1, y)$ |
|  | $(x, y+1)$ |  |

This set of pixels，called the 4－neighbors or $p$ ，is denoted by $N_{4}(p)$ ．Each pixel is one unit distance from（ $\mathrm{x}, \mathrm{y}$ ）and some of the neighbors of p lie outside the digital image if $(\mathrm{x}, \mathrm{y})$ is on the border of the image．The four diagonal neighbors of $p$ have coordinates and are denoted by $N_{D}(p)$ ．

$$
(x+1, y+1),(x+1, y-1),(x-1, y+1),(x-1, y-1)
$$




Fig：1．8（a）Arrangement of pixels；（b）pixels that are 8 －adjacent（shown dashed）to the center pixel；（c） $\boldsymbol{m}$－adjacency．

Types of Adjacency：
－In this example，we can note that to connect between two pixels（finding a path between two pixels）：
－In 8－adjacency way，you can find multiple paths between two pixels
－While，in m－adjacency，you can find only one path between two pixels
－So，m－adjacency has eliminated the multiple path connection that has been generated by the 8 －adjacency．
－Two subsets $S_{1}$ and $S_{2}$ are adjacent，if some pixel in $S_{l}$ is adjacent to some pixel in $S_{2}$ ． Adjacent means，either 4－，8－or m－adjacency．

## A Digital Path：

－A digital path（or curve）from pixel $p$ with coordinate $(x, y)$ to pixel $q$ with coordinate（ $s, t$ ） is a sequence of distinct pixels with coordinates $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)$ where $\left(x_{0}, y_{0}\right)=$ $(x, y)$ and $\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)=(s, t)$ and pixels $\left(x_{i}, y_{i}\right)$ and $\left(x_{i-l}, y_{i-l}\right)$ are adjacent for $1 \leq i \leq \mathrm{n}$
－ n is the length of the path
－If $\left(x_{0}, y_{0}\right)=\left(x_{\mathrm{n}}, y_{\mathrm{n}}\right)$ ，the path is closed．
We can specify 4 －， 8 －or m－paths depending on the type of adjacency specified．
－Return to the previous example：


Fig：1．8（a）Arrangement of pixels；（b）pixels that are 8－adjacent（shown dashed）to the center pixel；（c）m－adjacency．
In figure（b）the paths between the top right and bottom right pixels are 8－paths．And the path between the same 2 pixels in figure（c）is m－path
Connectivity：
－Let $S$ represent a subset of pixels in an image，two pixels $p$ and $q$ are said to be connected in $S$ if there exists a path between them consisting entirely of pixels in $S$ ．
－For any pixel $p$ in $S$ ，the set of pixels that are connected to it in $S$ is called a connected component of $S$ ．If it only has one connected component，then set $S$ is called a connected set．

Region and Boundary：
－$\quad$ REGION：Let $R$ be a subset of pixels in an image，we call $R$ a region of the image if $R$ is a connected set．
－BOUNDARY：The boundary（also called border or contour）of a region $R$ is the set of pixels in the region that have one or more neighbors that are not in $R$ ． If $R$ happens to be an entire image，then its boundary is defined as the set of pixels in the first and last rows and columns in the image．This extra definition is required because an image has no neighbors beyond its borders．Normally，when we refer to a region，we are referring to subset of an image，and any pixels in the boundary of the region that happen to coincide with the border of the image are included implicitly as part of the region boundary．

## DISTANCE MEASURES：

For pixel $\mathrm{p}, \mathrm{q}$ and z with coordinate（ $\mathrm{x} . \mathrm{y}$ ），（ $\mathrm{s}, \mathrm{t}$ ）and（ $\mathrm{v}, \mathrm{w}$ ）respectively D is a distance function or metric if

$$
\begin{aligned}
& \mathrm{D}[\mathrm{p} . \mathrm{q}] \geq \mathrm{O}\{\mathrm{D}[\mathrm{p} . \mathrm{q}]=\mathrm{O} \text { iff } \mathrm{p}=\mathrm{q}\} \\
& \mathrm{D}[\mathrm{p} . \mathrm{q}]=\mathrm{D}[\mathrm{p} . \mathrm{q}] \text { and } \\
& \mathrm{D}[\mathrm{p} . \mathrm{q}] \geq \mathrm{O}\{\mathrm{D}[\mathrm{p} . \mathrm{q}]+\mathrm{D}(\mathrm{q}, \mathrm{z})
\end{aligned}
$$

－The Euclidean Distance between $p$ and $q$ is defined as：

$$
D_{e}(p, q)=\left[(x-s)^{2}+(y-t)^{2}\right]^{1 / 2}
$$

Pixels having a distance less than or equal to some value $r$ from $(x, y)$ are the points contained in a disk of radius ， r ，，centered at（ $\mathrm{x}, \mathrm{y}$ ）

－The $D_{4}$ distance（also called city－block distance）between $p$ and $q$ is defined as：

$$
D_{4}(p, q)=|x-s|+|y-t|
$$








## WALSH TRANSFORM:

We define now the 1-D Walsh transform as follows:

$$
W(u)=\frac{1}{N} \sum_{x=0}^{N-1} f(x)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{n-1-i}(u)}\right]
$$

The above is equivalent to:

$$
W(u)=\frac{1}{N} \sum_{x=0}^{N-1} f(x)(-1)^{\sum_{i=1}^{n-1} b_{i}(x) b_{n-1-i}(u)}
$$

| ＊ | The transform kernel values are obtained from： |
| :---: | :---: |
| $*$ $*$ | $T(u, x)=T(x, u)=\frac{1}{N}\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{n-1-i}(u)}\right]=\frac{1}{N}(-1)^{\sum_{i=1}^{n-1} b_{i}(x) b_{n-1-i}(u)}$ |

Therefore，the array formed by the Walsh matrix is a real symmetric matrix．It is easily shown that it has orthogonal columns and rows
1－D Inverse Walsh Transform

$$
f(x)=\sum_{x=0}^{N-1} W(u)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{n-1-i}(u)}\right]
$$

The above is again equivalent to

$$
f(x)=\sum_{x=0}^{N-1} W(u)(-1)^{\sum_{i=1}^{n-1} b_{i}(x) b_{n-1-i}(u)}
$$

The array formed by the inverse Walsh matrix is identical to the one formed by the forward Walsh matrix apart from a multiplicative factor N ．

## 2－D Walsh Transform

We define now the 2－D Walsh transform as a straightforward extension of the 1－D transform：

$$
W(u, v)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{n-1-i}(u)+b_{i}(y) b_{n-1-i}(v)}\right]
$$

－The above is equivalent to：

$$
W(u, v)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)(-1)^{\sum_{i=1}^{n-1}\left(b_{i}(x) b_{n-1-i}(u)+b_{i}(x) b_{n-1-i}(u)\right)}
$$

## Inverse Walsh Transform

We define now the Inverse 2－D Walsh transform．It is identical to the forward 2－D Walsh transform

$$
f(x, y)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} W(u, v)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{n-1-i}(u)+b_{i}(y) b_{n-1-i}(v)}\right]
$$

－The above is equivalent to：

$$
f(x, y)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} W(u, v)(-1)^{\sum_{i=1}^{n-1}\left(b_{i}(x) b_{n-1-i}(u)+b_{i}(x) b_{n-1-i}(u)\right)}
$$

## HADAMARD TRANSFORM：

We define now the 2－D Hadamard transform．It is similar to the 2－D Walsh transform．

$$
H(u, v)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{i}(u)+b_{i}(y) b_{i}(v)}\right]
$$

The above is equivalent to：

$$
H(u, v)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x, y)(-1)^{\sum_{i=1}^{n-1}\left(b_{i}(x) b_{i}(u)+b_{i}(x) b_{i}(u)\right)}
$$

We define now the Inverse 2－D Hadamard transform．It is identical to the forward 2－D Hadamard transform．

$$
f(x, y)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} H(u, v)\left[\prod_{i=0}^{n-1}(-1)^{b_{i}(x) b_{i}(u)+b_{i}(y) b_{i}(v)}\right]
$$

The above is equivalent to：

$$
f(x, y)=\frac{1}{N} \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} H(u, v)(-1)^{\sum_{i=1}^{n-1}\left(b_{i}(x) b_{i}(u)+b_{i}(x) b_{i}(u)\right)}
$$

## DISCRETE COSINE TRANSFORM（DCT）：

The discrete cosine transform（DCT）helps separate the image into parts（or spectral sub－ bands）of differing importance（with respect to the image＇s visual quality）．The DCT is similar to the discrete Fourier transform：it transforms a signal or image from the spatial domain to the frequency domain．
The general equation for a 1D（ $N$ data items）DCT is defined by the following equation：

$$
F(u)=\left(\frac{2}{N}\right)^{\frac{1}{2}} \sum_{i=0}^{N-1} \Lambda(i) \cdot \cos \left[\frac{\pi \cdot u}{2 \cdot N}(2 i+1)\right] f(i)
$$

and the corresponding inverse 1D DCT transform is simple $F^{-1}(u)$ ，i．e．：
where

$$
\Lambda(i)= \begin{cases}\frac{1}{\sqrt{2}} & \text { for } \xi=0 \\ 1 & \text { otherwise }\end{cases}
$$

The general equation for a 2 D （ $N$ by $M$ image）DCT is defined by the following equation：


|  | $S_{i}+S_{i+1}$ | $\boldsymbol{S}_{\boldsymbol{i}}-\boldsymbol{S}_{\boldsymbol{i}+1}$ |
| :---: | :---: | :---: |
| * | 2 | 2 |

In wavelet terminology the Haar average is calculated by the scaling function. The coefficient is calculated by the wavelet function.

## Two-Dimensional Wavelets

The two-dimensional wavelet transform is separable, which means we can apply a one-dimensional wavelet transform to an image. We apply one-dimensional DWT to all rows and then one-dimensional DWTs to all columns of the result. This is called the standard decomposition and it is illustrated in figure 4.8.


Figure The standard decomposition of the two-dimensional DWT.
We can also apply a wavelet transform differently. Suppose we apply a wavelet transform to an image by rows, then by columns, but using our transform at one scale only. This technique will produce a result in four quarters: the top left will be a half-sized version of the image and the other quarter"s high-pass filtered images. These quarters will contain horizontal, vertical, and diagonal edges of the image. We then apply a one-scale DWT to the top-left quarter, creating smaller images, and so on. This is called the nonstandard decomposition, and is illustrated in figure 4.9.


Figure 4.9 The nonstandard decomposition of the two-dimensional DWT.
Steps for performing a one-scale wavelet transform are given below:
Step 1: Convolve the image rows with the low-pass filter.



 methods and frequency domain methods．The term spatial domain refers to the image plane itself，and approaches in this category are based on direct manipulation of pixels in an image．
Frequency domain processing techniques are based on modifying the Fourier transform of an image．Enhancing an image provides better contrast and a more detailed image as compare to non enhanced image．Image enhancement has very good applications．It is used to enhance medical images，images captured in remote sensing，images from satellite e．t．c．As indicated previously，the term spatial domain refers to the aggregate of pixels composing an image． Spatial domain methods are procedures that operate directly on these pixels．Spatial domain processes will be denoted by the expression．

$$
\mathrm{g}(\mathrm{x}, \mathrm{y})=\mathrm{T}[\mathrm{f}(\mathrm{x}, \mathrm{y})]
$$

where $f(x, y)$ is the input image，$g(x, y)$ is the processed image，and $T$ is an operator on $f$ ，defined over some neighborhood of（ $x, y$ ）．The principal approach in defining a neighborhood about a point（ $x, y$ ）is to use a square or rectangular subimage area centered at （ $\mathrm{x}, \mathrm{y}$ ），as Fig． 2.1 shows．The center of the subimage is moved from pixel to pixel starting， say，at the top left corner．The operator T is applied at each location（ $\mathrm{x}, \mathrm{y}$ ）to yield the output， g ，at that location．The process utilizes only the pixels in the area of the image spanned by the neighborhood．
Fig．： $3 \times 3$ neighborhood about a point（ $\mathrm{x}, \mathrm{y}$ ）in an image．
The simplest form of T is when the neighborhood is of size $1^{*} 1$（that is，a single pixel）．In this case，$g$ depends only on the value of $f$ at（ $x, y$ ），and $T$ becomes a gray－level（also called an intensity or mapping）transformation function of the form

## IMAGE ENHANCEMENT

Image enhancement approaches fall into two broad categories：spatial domain



$$
\mathrm{s}=\mathrm{T}(\mathrm{r})
$$

where $r$ is the pixels of the input image and $s$ is the pixels of the output image．$T$ is a transformation function that maps each value of ，，re to each value of „， $\mathrm{s}^{\text {ce }}$ ．
For example，if T（r）has the form shown in Fig．2．2（a），the effect of this transformation would be to produce an image of higher contrast than the original by darkening the levels below m and brightening the levels above m in the original image．In this technique，known as contrast stretching，the values of r below m are compressed by the transformation function into a narrow range of $s$ ，toward black．The opposite effect takes place for values of $r$ above $m$ ．
In the limiting case shown in Fig．2．2（b），T（r）produces a two－level（binary）image．A mapping of this form is called a thresholding function．
One of the principal approaches in this formulation is based on the use of so－called masks（also referred to as filters，kernels，templates，or windows）．Basically，a mask is a small （say，3＊3）2－D array，such as the one shown in Fig．2．1，in which the values of the mask coefficients determine the nature of the process，such as image sharpening．Enhancement techniques based on this type of approach often are referred to as mask processing or filtering．

Fig．2．2 Gray level transformation functions for contrast enhancement．
Image enhancement can be done through gray level transformations which are discussed below．
BASICGRAY LEVELTRANSFORMATIONS：
Imagenegative
Log transformations
Power law transformations
Piecewise－Lineartransformationfunctions

## LINEAR TRANSFORMATION：

First we will look at the linear transformation．Linear transformation includes simple identity and negative transformation．Identity transformation has been discussed in our



－The shape of the curve shows that this transformation maps the narrow range of low gray level values in the input image into a wider range of outputimage．
－The opposite is true for highlevel values of inputimage．

Fig．log transformation curve input vs output

## POWER－LAWTRANSFORMATIONS：

There are further two transformation is power law transformations，that include nth power and nth root transformation．These transformations can be given by the expression：

$$
\mathrm{s}=\mathrm{cr}^{\gamma}
$$

This symbol $\gamma$ is called gamma，due to which this transformation is also known as gamma transformation．
Variation in the value of $\gamma$ varies the enhancement of the images．Different display devices／monitors have their own gamma correction，that＂s why they display their image at different intensity．
where c and g are positive constants．Sometimes Eq．（6）is written as $\mathrm{S}=\mathrm{C}(\mathrm{r}+\varepsilon)^{\gamma}$ to account for an offset（that is，a measurable output when the input is zero）．Plots of $s$ versus $r$ for various values of $\gamma$ are shown in Fig．2．10．As in the case of the log transformation， power－law curves with fractional values of $\gamma$ map a narrow range of dark input values into a wider range of output values，with the opposite being true for higher values of input levels． Unlike the $\log$ function，however，we notice here a family of possible transformation curves obtained simply by varying $\gamma$ ．
In Fig that curves generated with values of $\gamma>1$ have exactly The opposite effect as those generated with values of $\gamma<1$ ．Finally，we Note that Eq．（6）reduces to the identity transformation when $\mathrm{c}=\gamma=1$ ．


Fig．2．13 Plot of the equation $\mathrm{S}=\mathrm{cr}^{\gamma}$ for various values of $\gamma$（ $\mathrm{c}=1$ in all cases）．
This type of transformation is used for enhancing images for different type of display devices．The gamma of different display devices is different．For example Gamma of CRT lies in between of 1.8 to 2.5 ，that means the image displayed on CRT is dark．
Varying gamma $(\gamma)$ obtains family of possible transformation curves $\mathrm{S}=\mathrm{C}^{*} \mathrm{r}^{\gamma}$
Here C and $\gamma$ are positive constants．Plot of S versus r for various values of $\gamma$ is
$\gamma>1$ compresses dark values
Expands bright values
$\gamma<1$（similar toLog transformation）
Expands dark values
Compresses bright values
When $\mathrm{C}=\gamma=1$ ，it reduces to identity transformation．
CORRECTING GAMMA：
$\mathrm{s}=\mathrm{cr}^{\gamma}$
$\mathrm{s}=\mathrm{cr}{ }^{(1 / 2.5)}$
The same image but with different gamma values has been shown here．

## Piecewise－Linear Transformation Functions：

A complementary approach to the methods discussed in the previous three sections is to use piecewise linear functions．The principal advantage of piecewise linear functions over the types of functions we have discussed thus far is that the form of piecewise functions can be arbitrarily complex．
The principal disadvantage of piecewise functions is that their specification requires considerably more user input．
Contrast stretching：One of the simplest piecewise linear functions is a contrast－stretching transformation．Low－contrast images can result from poor illumination，lack of dynamic


[0, L-1]. Finally, Fig. $x(d)$ shows the result of using the thresholding function defined previously,
with $\mathrm{r} 1=\mathrm{r} 2=\mathrm{m}$, the mean gray level in the image. The original image on which these results are based is a scanning electron microscope image of pollen, magnified approximately 700 times.
Gray-level slicing:
Highlighting a specific range of gray levels in an image often is desired. Applications include enhancing features such as masses of water in satellite imagery and enhancing flaws in X-ray images.
There are several ways of doing level slicing, but most of them are variations of two basic themes.One approach is to display a high value for all gray levels in the range of interest and a low value for all other gray levels.
This transformation, shown in Fig. y(a), produces a binary image. The second approach, based on the transformation shown in Fig.y (b), brightens the desired range of gray levels but preserves the background and gray-level tonalities in the image. Figure y (c) shows a gray-scale image, and Fig. $y(d)$ shows the result of using the transformation in Fig. $y(a)$.Variations of the two transformations shown in Fig. are easy to formulate.

Fig. y (a)This transformation highlights range $[A, B]$ of gray levels and reduces all others to a constant level (b) This transformation highlights range [A,B] but preserves all other levels. (c) An image . (d) Result of using the transformation in (a).

## BIT-PLANE SLICING:

Instead of highlighting gray-level ranges, highlighting the contribution made to total image appearance by specific bits might be desired. Suppose that each pixel in an image is represented by 8 bits. Imagine that the image is composed of eight 1 -bit planes, ranging from bit-plane 0 for the least significant bit to bit plane 7 for the most significant bit. In terms of 8-
bit bytes，plane 0 contains all the lowest order bits in the bytes comprising the pixels in the image and plane 7 contains all the high－order bits．
Figure 3.12 illustrates these ideas，and Fig． 3.14 shows the various bit planes for the image shown in Fig．3．13．Note that the higher－order bits（especially the top four）contain the majority of the visually significant data．The other bit planes contribute to more subtle details in the image．Separating a digital image into its bit planes is useful for analyzing the relative importance played by each bit of the image，a process that aids in determining the adequacy of the number of bits used to quantize each pixel．

In terms of bit－plane extraction for an 8 －bit image，it is not difficult to show that the （binary）image for bit－plane 7 can be obtained by processing the input image with a thresholding gray－level transformation function that（1）maps all levels in the image between 0 and 127 to one level（for example，0）；and（2）maps all levels between 129 and 255 to another（for example，255）．The binary image for bit－plane 7 in Fig． 3.14 was obtained in just this manner．It is left as an exercise
（Problem 3．3）to obtain the gray－level transformation functions that would yield the other bit planes．

## Histogram Processing：

The histogram of a digital image with gray levels in the range［0，L－1］is a discrete function of the form

$$
\mathbf{H}(\mathbf{r k})=\mathbf{n k}
$$

where rk is the kth gray level and nk is the number of pixels in the image having the level rk．．A normalized histogram is given by the equation

$$
\mathrm{p}(\mathrm{rk})=\mathrm{nk} / \mathrm{n} \text { for } \mathrm{k}=0,1,2, \ldots \ldots, \mathrm{~L}-1
$$

$\mathrm{P}(\mathrm{rk})$ gives the estimate of the probability of occurrence of gray level rk．
The sum of all components of a normalized histogram is equal to 1 ．
The histogram plots are simple plots of $\mathrm{H}(\mathrm{rk})=\mathrm{nk}$ versus rk ．

## ＊





Thus the PDF of the transformed variable s is the determined by the gray levels PDF of the input image and by the chosen transformations function．
A transformation function of a particular importance in image processing

$$
s=T(r)=(L-1) \int_{0}^{r} p_{r}(w) d w
$$

This is the cumulative distribution function of $r$ ．
L is the total number of possible gray levels in the image．

## IMAGE ENHANCEMENT IN FREQUENCY DOMAIN

BLURRING／NOISE REDUCTION：Noise characterized by sharp transitions in image intensity．Such transitions contribute significantly to high frequency components of Fourier transform．Intuitively，attenuating certain high frequency components result in blurring and reduction of image noise．
IDEAL LOW－PASS FILTER：
Cuts off all high－frequency components at a distance greater than a certain distance from origin（cutoff frequency）．

$$
\begin{gathered}
\mathrm{H}(\mathrm{u}, \mathrm{v})=1 \text {, if } \mathrm{D}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}_{0} \\
0, \text { if } \mathrm{D}(\mathrm{u}, \mathrm{v})>\mathrm{D}_{0}
\end{gathered}
$$

Where $D 0$ is a positive constant and $D(u, v)$ is the distance between a point $(u, v)$ in the frequency domain and the center of the frequency rectangle；that is

$$
\mathrm{D}(\mathrm{u}, \mathrm{v})=\left[(\mathrm{u}-\mathrm{P} / 2)^{2}+(\mathrm{V}-\mathrm{Q} / 2)^{2}\right]^{1 / 2}
$$

Where as P and Q are the padded sizes from the basic equations
Wraparound error in their circular convolution can be avoided by padding these functions with zeros，
VISUALIZATION：IDEAL LOW PASS FILTER：
Aa shown in fig．below

Fig：ideal low pass filter 3－D view and 2－D view and line graph．

## EFFECT OF DIFFERENT CUTOFF FREQUENCIES：

Fig．below（a）Test pattern of size $688 \times 688$ pixels，and（b）its Fourier spectrum．The spectrum is double the image size due to padding but is shown in half size so that it fits in the page． The superimposed circles have radii equal to $10,30,60,160$ and 460 with respect to the full－ size spectrum image．These radii enclose $87.0,93.1,95.7,97.8$ and $99.2 \%$ of the padded image power respectively．


Fig：（a）Test patter of size $688 \times 688$ pixels（b）its Fourier spectrum


Fig：（a）original image，（b）－（f）Results of filtering using ILPFs with cutoff frequencies set at radii values $10,30,60,160$ and 460 ，as shown in fig．2．2．2（b）．The power removed by these filters was $13,6.9,4.3,2.2$ and $0.8 \%$ of the total，respectively．


Fig．2．2．7（a）－（d）Spatial representation of BLPFs of order 1，2， 5 and 20 and corresponding intensity profiles through the center of the filters（the size in all cases is 1000 x 1000 and the cutoff frequency is 5）Observe how ringing increases as a function of filter order．

## GAUSSIAN LOWPASS FILTERS：

The form of these filters in two dimensions is given by

$$
H(u, v)=e^{-D^{2}(u, v) / 2 D_{0}^{2}}
$$

－This transfer function is smooth，like Butterworth filter．
－Gaussian in frequency domain remains a Gaussian in spatial domain
－Advantage：No ringing artifacts． the five radii in fig．（b）for the ILPF，we note here a smooth transition in blurring as a function of increasing cutoff frequency．Moreover，no ringing is visible in any of the images processed with this particular BLPF，a fact attributed to the filter＂s smooth transition between low and high frequencies．
A BLPF of order 1 has no ringing in the spatial domain．Ringing generally is imperceptible in filters of order 2，but can become significant in filters of higher order．
Fig．shows a comparison between the spatial representation of BLPFs of various orders（using a cutoff frequency of 5 in all cases）．Shown also is the intensity profile along a horizontal scan line through the center of each filter．The filter of order 2 does show mild ringing and small negative values，but they certainly are less pronounced than in the ILPF．A butter worth filter of order 20 exhibits characteristics similar to those of the ILPF（in the limit，both filters are identical）．



Fig. (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c). Filter radial cross sections for various values of $D_{0}$


Fig.(a) Original image. (b)-(f) Results of filtering using GLPFs with cutoff frequencies at the radii shown in fig.2.2.2. compare with fig.2.2.3 and fig.2.2.6

Fig．（a）Original image（784x 732 pixels）．（b）Result of filtering using a GLPF with $\mathrm{D} 0=100$ ．（c）Result of filtering using a GLPF with $\mathrm{D} 0=80$ ．Note the reduction in fine skin lines in the magnified sections in（b）and（c）．

Fig．shows an application of lowpass filtering for producing a smoother，softer－ looking result from a sharp original．For human faces，the typical objective is to reduce the sharpness of fine skin lines and small blemished．

## IMAGE SHARPENING USING FREQUENCY DOMAIN FILTERS：

An image can be smoothed by attenuating the high－frequency components of its Fourier transform．Because edges and other abrupt changes in intensities are associated with high－frequency components，image sharpening can be achieved in the frequency domain by high pass filtering，which attenuates the low－frequency components without disturbing high－ frequency information in the Fourier transform．

The filter function $H(u, v)$ are understood to be discrete functions of size PxQ；that is the discrete frequency variables are in the range $u=0,1,2, \ldots \ldots . \mathrm{P}-1$ and $\mathrm{v}=0,1,2, \ldots \ldots \mathrm{Q}-1$ ．

The meaning of sharpening is
－Edges and fine detail characterized by sharp transitions in image intensity
－Such transitions contribute significantly to high frequency components of Fourier transform
－Intuitively，attenuating certain low frequency components and preserving high frequency components result in sharpening．
Intended goal is to do the reverse operation of low－pass filters
－When low－pass filter attenuated frequencies，high－pass filter passes them

## 米



- When high-pass filter attenuates frequencies, low-pass filter passes them. A high pass filter is obtained from a given low pass filter using the equation.

$$
\mathrm{H}_{\mathrm{hp}}(\mathrm{u}, \mathrm{v})=1-\mathrm{H}_{\mathrm{tp}}(\mathrm{u}, \mathrm{v})
$$

Where $H_{l p}(u, v)$ is the transfer function of the low-pass filter. That is when the lowpass filter attenuates frequencies, the high-pass filter passed them, and vice-versa.
We consider ideal, Butter-worth, and Gaussian high-pass filters. As in the previous section, we illustrate the characteristics of these filters in both the frequency and spatial domains. Fig.. shows typical 3-D plots, image representations and cross sections for these filters. As before, we see that the Butter-worth filter represents a transition between the sharpness of the ideal filter and the broad smoothness of the Gaussian filter. Fig.discussed in the sections the follow, illustrates what these filters look like in the spatial domain. The spatial filters were obtained and displayed by using the procedure used.

Fig: Top row: Perspective plot, image representation, and cross section of a typical ideal high-pass filter. Middle and bottom rows: The same sequence for typical butter-worth and Gaussian high-pass filters.
IDEAL HIGH-PASS FILTER:
A 2-D ideal high-pass filter (IHPF) is defined as

$$
\begin{gathered}
\mathrm{H}(\mathrm{u}, \mathrm{v})=0 \text {, if } \mathrm{D}(\mathrm{u}, \mathrm{v}) \leq \mathrm{D}_{0} \\
1, \text { if } \mathrm{D}(\mathrm{u}, \mathrm{v})>\mathrm{D}_{0}
\end{gathered}
$$





Fig．Results of high－pass filtering the image in fig．（a）using a GHPF with D0 $=30,60$ and 160 ，corresponding to the circles in Fig．（b）．


IMAGE RESTORATION

## IMAGE RESTORATION：

Restoration improves image in some predefined sense．It is an objective process． Restoration attempts to reconstruct an image that has been degraded by using a priori knowledge of the degradation phenomenon．These techniques are oriented toward modeling the degradation and then applying the inverse process in order to recover the original image．Restoration techniques are based on mathematical or probabilistic models of image processing．Enhancement，on the other hand is based on human subjective preferences regarding what constitutes a＂good＂enhancement result．Image Restoration refers to a class of methods that aim to remove or reduce the degradations that have occurred while the digital image was being obtained．All natural images when displayed have gone through some sort of degradation：
－During display mode
－Acquisition mode，or
－Processing mode
－Sensor noise
－Blur due to camera mis focus
－Relative object－camera motion
－Random atmospheric turbulence
－Others

## Degradation Model：

Degradation process operates on a degradation function that operates on an input image with an additive noise term．Input image is represented by using the notation $f(x, y)$ ，noise term can be represented as $\eta(x, y)$ ．These two terms when combined gives the result as $g(x, y)$ ．If we are given $g(x, y)$ ，some knowledge about the degradation function H or J and some knowledge about the additive noise teem $\eta(\mathrm{x}, \mathrm{y})$ ，the objective of restoration is to obtain an estimate $f^{\prime}(x, y)$ of the original image．We want the estimate to be as close as possible to the original image．The more we know about $h$ and $\eta$ ，the closer $f(x, y)$ will be to $f^{\prime}(x, y)$ ．If it is a linear position invariant process，then degraded image is given in the spatial domain by

$$
\mathbf{g}(\mathbf{x}, \mathbf{y})=\mathbf{f}(\mathbf{x}, \mathbf{y})^{*} \mathbf{h}(\mathbf{x}, \mathbf{y})+\boldsymbol{\eta}(\mathbf{x}, \mathbf{y})
$$



Fig：A model of the image Degradation／Restoration process

## Noise Models：

The principal source of noise in digital images arises during image acquisition and／or transmission．The performance of imaging sensors is affected by a variety of factors，such as environmental conditions during image acquisition and by the quality of the sensing elements themselves．Images are corrupted during transmission principally due to interference in the channels used for transmission．Since main sources of noise presented in digital images are resulted from atmospheric disturbance and image sensor circuitry，following assumptions can be made i．e．the noise model is spatial invariant （independent of spatial location）．The noise model is uncorrelated with the object function．

## Gaussian Noise：

These noise models are used frequently in practices because of its tractability in both spatial and frequency domain．The PDF of Gaussian random variable is

$$
p_{z}(z)= \begin{cases}\frac{1}{b-a} & \text { if } a \leq z \leq b \\ 0 & \text { otherwise }\end{cases}
$$

Where z represents the gray level，$\mu=$ mean of average value of $\mathrm{z}, \sigma=$ standard deviation．

| $\begin{aligned} & \text { 米 } \\ & \text { 娄 } \\ & \text { 米 } \end{aligned}$ |  |
| :---: | :---: |
|  | Rayleigh Noise： <br> Unlike Gaussian distribution，the Rayleigh distribution is no symmetric．It is given by the formula． $p_{z}(z)= \begin{cases}\frac{2}{b}(z-a) e^{-(z-a)^{2} / b} & z \geq a \\ 0 & z<a\end{cases}$ |
|  | The mean and variance of this density is $m=a+\sqrt{\pi b / 4}, \sigma^{2}=\frac{b(4-\pi)}{4}$  |
| $\begin{aligned} & \text { 米 } \\ & \text { 米 } \\ & \text { 米 } \\ & \text { * } \\ & \text { w } \end{aligned}$ | （iii）Gamma Noise： <br> The PDF of Erlang noise is given by $p(z)=\left\{\begin{array}{l} \frac{a^{b} z^{b-1}}{(b-1)!} e^{-a z}, \text { for } z \geq 0 \\ 0, \text { for } z<0 \end{array}\right.$ |
| $\begin{aligned} & \text { 米 } \\ & \text { 米 } \end{aligned}$ | The mean and variance of this density are given by mean：$\mu=\frac{b}{a}$ variance ：$\sigma^{2}=\frac{b}{a^{2}}$ |







（e）Median filter：
It is the best order statistic filter；it replaces the value of a pixel by the median of gray levels in the Neighborhood of the pixel．

$$
\hat{f}(x, y)=\operatorname{median}_{(s, t) \in S x y}\{g(s, t)\}
$$

The original of the pixel is included in the computation of the median of the filter are quite possible because for certain types of random noise，the provide excellent noise reduction capabilities with considerably less blurring then smoothing filters of similar size．These are effective for bipolar and unipolor impulse noise．
（e）Max and Min filter：
Using the 100th percentile of ranked set of numbers is called the max filter and is given by the equation

$$
\hat{f}(x, y)=\max _{(s, t) \in S x y}\{g(s, t)\}
$$

It is used for finding the brightest point in an image．Pepper noise in the image has very low values，it is reduced by max filter using the max selection process in the sublimated area sky．The 0th percentile filter is min filter．

$$
\hat{f}(x, y)=\min _{(s, t) \in S y}\{g(s, t)\}
$$

This filter is useful for flinging the darkest point in image．Also，it reduces salt noise of the min operation．
（f）Midpoint filter：
The midpoint filter simply computes the midpoint between the maximum and minimum values in the area encompassed by

$$
\hat{f}(x, y)=\left(\max _{(s, t) \in S x y}\{g(s, t)\}+\min _{(s, t) \in S x y}\{g(s, t)\}\right) / 2
$$

> It comeliness the order statistics and averaging .This filter works best for randomly distributed noise like Gaussian or uniform noise.

## Periodic Noise by Frequency domain filtering：

## Band Reject Filters：

It removes a band of frequencies about the origin of the Fourier transformer．
Ideal Band reject Filter：




## Inverse Filtering：

The simplest approach to restoration is direct inverse filtering where we complete an estimate $\hat{F}(u, v)$ of the transform of the original image simply by dividing the transform of the degraded image $G(u, v)$ by degradation function $H(u, v)$

$$
\hat{F}(u, v)=\frac{G(u, v)}{H(u, v)}
$$

We know that

$$
G(u, v)=H(u, v) F(u, v)+N(u, v)
$$

Therefore

$$
\hat{F}(u, v)=F(u, v)+\frac{N(u, v)}{H(u, v)}
$$

From the above equation we observe that we cannot recover the undegraded image exactly because $\mathrm{N}(\mathrm{u}, \mathrm{v})$ is a random function whose Fourier transform is not known．
One approach to get around the zero or small－value problem is to limit the filter frequencies to values near the origin．
We know that $\mathrm{H}(0,0)$ is equal to the average values of $\mathrm{h}(\mathrm{x}, \mathrm{y})$ ．
By Limiting the analysis to frequencies near the origin we reduse the probability of encountering zero values．

## Minimum mean Square Error（Wiener）filtering：

The inverse filtering approach has poor performance．The wiener filtering approach uses the degradation function and statistical characteristics of noise into the restoration process．
The objective is to find an estimate $\hat{f}$ of the uncorrupted image $f$ such that the mean square error between them is minimized．
The error measure is given by

$$
e^{2}=E\left\{[f(x)-\hat{f}(x)]^{2}\right.
$$

Where $\mathrm{E}\{$.$\} is the expected value of the argument．$
We assume that the noise and the image are uncorrelated one or the other has zero mean．
The gray levels in the estimate are a linear function of the levels in the degraded image．
Where $\mathrm{H}(\mathrm{u}, \mathrm{v})=$ degradation function
$H^{*}(u, v)=$ complex conjugate of $\mathrm{H}(\mathrm{u}, \mathrm{v})$
$|\mathrm{H}(\mathrm{u}, \mathrm{v})|^{2}=\mathrm{H}^{*}(\mathrm{u}, \mathrm{v}) \mathrm{H}(\mathrm{u}, \mathrm{v})$
$S_{n}(u, v)=|N(u, v)|^{2}=$ power spectrum of the noise
$\mathrm{S}_{\mathrm{f}}(\mathrm{u}, \mathrm{v})=|\mathrm{F}(\mathrm{u}, \mathrm{v})|^{2}=$ power spectrum of the underrated image
The power spectrum of the undegraded image is rarely known．An approach used frequently when these quantities are not known or cannot be estimated then the expression used is

$$
\hat{F}(u, v)=\left[\frac{1}{H(u, v)} \frac{|H(u, v)|^{2}}{|H(u, v)|^{2}+K}\right] G(u, v)
$$

Where K is a specified constant．

## Constrained least squares filtering：

The wiener filter has a disadvantage that we need to know the power spectra of the undegraded image and noise．The constrained least square filtering requires only the knowledge of only the mean and variance of the noise．These parameters usually can be calculated from a given degraded image this is the advantage with this method． This method produces a optimal result．This method require the optimal criteria which is important we express the

$$
\begin{gathered}
g(x, y)=h(x, y) \star f(x, y)+\eta(x, y) \text { in vector-matrix form } \\
\mathbf{g}=\mathbf{H f}+\boldsymbol{\eta}
\end{gathered}
$$

The optimality criteria for restoration is based on a measure of smoothness，such as the second derivative of an image（Laplacian）．
The minimum of a criterion function C defined as

$$
C=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}\left[\nabla^{2} f(x, y)\right]^{2}
$$



米米米米米米米粎米米米粎米米米米米米米

